메뉴 건너뛰기




Volumn 10, Issue 7, 2017, Pages 757-768

Local search methods for k-means with outliers

Author keywords

[No Author keywords available]

Indexed keywords

DATA HANDLING; HEURISTIC METHODS; LOCAL SEARCH (OPTIMIZATION); STATISTICS;

EID: 85026321311     PISSN: None     EISSN: 21508097     Source Type: Conference Proceeding    
DOI: 10.14778/3067421.3067425     Document Type: Conference Paper
Times cited : (130)

References (39)
  • 1
    • 70449722914 scopus 로고    scopus 로고
    • Adaptive sampling for k-means clustering
    • A. Aggarwal, A. Deshpande, and R. Kannan. Adaptive sampling for k-means clustering. In RANDOM, pages 15-28, 2009.
    • (2009) RANDOM , pp. 15-28
    • Aggarwal, A.1    Deshpande, A.2    Kannan, R.3
  • 2
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • C. Aggarwal and P. Yu. Outlier detection for high dimensional data. In SIGMOD, pages 37-46, 2001.
    • (2001) SIGMOD , pp. 37-46
    • Aggarwal, C.1    Yu, P.2
  • 4
    • 85039571873 scopus 로고    scopus 로고
    • A linear method for deviation detection in large databases
    • A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation detection in large databases. In KDD, pages 164-169, 1996.
    • (1996) KDD , pp. 164-169
    • Arning, A.1    Agrawal, R.2    Raghavan, P.3
  • 5
    • 84969135721 scopus 로고    scopus 로고
    • k-means++: the advantages of careful seeding
    • D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In SODA, pages 1027-1035, 2007.
    • (2007) SODA , pp. 1027-1035
    • Arthur, D.1    Vassilvitskii, S.2
  • 7
    • 77952380096 scopus 로고    scopus 로고
    • Mining distance-based outliers in near linear time with randomization and a simple pruning rule
    • S. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In KDD, pages 29-38, 2003.
    • (2003) KDD , pp. 29-38
    • Bay, S.1    Schwabacher, M.2
  • 8
    • 84892062680 scopus 로고    scopus 로고
    • Survey of clustering data mining techniques
    • J. Kogan, C. K. Nicholas, and M. Teboulle, editors. Springer
    • P. Berkhin. Survey of clustering data mining techniques. In J. Kogan, C. K. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent Advances in Clustering. Springer, 2006.
    • (2006) Grouping Multidimensional Data: Recent Advances in Clustering
    • Berkhin, P.1
  • 9
    • 57149146298 scopus 로고    scopus 로고
    • Outlier-robust clustering using independent components
    • C. Bohm, C. Faloutsos, and C. Plant. Outlier-robust clustering using independent components. In SIGMOD, pages 185-198, 2008.
    • (2008) SIGMOD , pp. 185-198
    • Bohm, C.1    Faloutsos, C.2    Plant, C.3
  • 10
    • 0039253819 scopus 로고    scopus 로고
    • LOF: Identifying density-based local outliers
    • M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying density-based local outliers. SIGMOD Record, 29(2):93-104, 2000.
    • (2000) SIGMOD Record , vol.29 , Issue.2 , pp. 93-104
    • Breunig, M.M.1    Kriegel, H.-P.2    Ng, R.T.3    Sander, J.4
  • 11
    • 26944440987 scopus 로고    scopus 로고
    • Algorithms for facility location problems with outliers
    • M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Algorithms for facility location problems with outliers. In SODA, pages 642-651, 2001.
    • (2001) SODA , pp. 642-651
    • Charikar, M.1    Khuller, S.2    Mount, D.M.3    Narasimhan, G.4
  • 12
    • 84960498671 scopus 로고    scopus 로고
    • k-means-: A unified approach to clustering and outlier detection
    • S. Chawla and A. Gionis. k-means-: A unified approach to clustering and outlier detection. In ICDM, pages 189-197, 2013.
    • (2013) ICDM , pp. 189-197
    • Chawla, S.1    Gionis, A.2
  • 13
    • 51849153520 scopus 로고    scopus 로고
    • A constant factor approximation algorithm for k-median clustering with outliers
    • K. Chen. A constant factor approximation algorithm for k-median clustering with outliers. In SODA, pages 826-835, 2008.
    • (2008) SODA , pp. 826-835
    • Chen, K.1
  • 14
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In AAAI, pages 226-231, 1996.
    • (1996) AAAI , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 15
    • 0002679222 scopus 로고    scopus 로고
    • Scalability for clustering algorithms revisited
    • F. Farnstrom, J. Lewis, and C. Elkan. Scalability for clustering algorithms revisited. SIGKDD Explor. Newsl., 2:51-57, 2000.
    • (2000) SIGKDD Explor. Newsl. , vol.2 , pp. 51-57
    • Farnstrom, F.1    Lewis, J.2    Elkan, C.3
  • 16
    • 35348830377 scopus 로고    scopus 로고
    • A PTAS for k-means clustering based on weak coresets
    • D. Feldman, M. Monemizadeh, and C. Sohler. A PTAS for k-means clustering based on weak coresets. In SOCG, pages 11-18, 2007.
    • (2007) SOCG , pp. 11-18
    • Feldman, D.1    Monemizadeh, M.2    Sohler, C.3
  • 17
  • 18
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for large databases. In SIGMOD, pages 73-84, 1998.
    • (1998) SIGMOD , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 19
    • 19944363201 scopus 로고    scopus 로고
    • Research issues in automatic database clustering
    • S. Guinepain and L. Gruenwald. Research issues in automatic database clustering. SIGMOD Record, 34(1):33-38, 2005.
    • (2005) SIGMOD Record , vol.34 , Issue.1 , pp. 33-38
    • Guinepain, S.1    Gruenwald, L.2
  • 20
    • 77954912225 scopus 로고    scopus 로고
    • Simpler analyses of local search algorithms for facility location
    • 0809.2554
    • A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility location. CoRR, abs/0809.2554, 2008.
    • (2008) CoRR
    • Gupta, A.1    Tangwongsan, K.2
  • 21
    • 33846811413 scopus 로고    scopus 로고
    • Smaller coresets for k-median and k-means clustering
    • S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering. Discrete & Computational Geometry, 37(1):3-19, 2007.
    • (2007) Discrete & Computational Geometry , vol.37 , Issue.1 , pp. 3-19
    • Peled-Har, S.1    Kushal, A.2
  • 22
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • A. Hinneburg and D. A. Keim. An efficient approach to clustering in large multimedia databases with noise. In KDD, pages 58-65, 1998.
    • (1998) KDD , pp. 58-65
    • Hinneburg, A.1    Keim, D.A.2
  • 25
    • 0003858566 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. In VLDB, pages 392-403, 1998.
    • (1998) VLDB , pp. 392-403
    • Knorr, E.1    Ng, R.2
  • 26
    • 0003203996 scopus 로고    scopus 로고
    • A unified notion of outliers: Properties and computation
    • E. M. Knorr and R. T. Ng. A unified notion of outliers: Properties and computation. In KDD, pages 19-22, 1997.
    • (1997) KDD , pp. 19-22
    • Knorr, E.M.1    Ng, R.T.2
  • 27
    • 11244288693 scopus 로고    scopus 로고
    • A simple linear time (1+ε)-approximation algorithm for k-means clustering in any dimensions
    • A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1+ε)-approximation algorithm for k-means clustering in any dimensions. In FOCS, pages 454-462, 2004.
    • (2004) FOCS , pp. 454-462
    • Kumar, A.1    Sabharwal, Y.2    Sen, S.3
  • 30
    • 0012905555 scopus 로고    scopus 로고
    • Finding intensional knowledge of distance-based outliers
    • K. E. M. and N. R. T.
    • K. E. M. and N. R. T. Finding intensional knowledge of distance-based outliers. In VLDB, pages 211-222, 1999.
    • (1999) VLDB , pp. 211-222
  • 31
    • 84965161129 scopus 로고    scopus 로고
    • Fast distributed k-center clustering with outliers on massive data
    • G. Malkomes, M. Kusner, W. Chen, K. Weinberger, and B. Moseley. Fast distributed k-center clustering with outliers on massive data. In NIPS, pages 1063-1071, 2015.
    • (2015) NIPS , pp. 1063-1071
    • Malkomes, G.1    Kusner, M.2    Chen, W.3    Weinberger, K.4    Moseley, B.5
  • 32
    • 51849117754 scopus 로고    scopus 로고
    • Streaming algorithms for k-center clustering with outliers and with anonymity
    • R. M. McCutchen and S. Khuller. Streaming algorithms for k-center clustering with outliers and with anonymity. In APPROX, pages 165-178, 2008.
    • (2008) APPROX , pp. 165-178
    • McCutchen, R.M.1    Khuller, S.2
  • 33
    • 85008009667 scopus 로고    scopus 로고
    • Integrating k-means clustering with a relational DBMS using SQL
    • C. Ordonez. Integrating k-means clustering with a relational DBMS using SQL. TKDE, 18:188-201, 2006.
    • (2006) TKDE , vol.18 , pp. 188-201
    • Ordonez, C.1
  • 34
    • 0039845361 scopus 로고    scopus 로고
    • SQLEM: Fast clustering in SQL using the EM algorithm
    • C. Ordonez and P. Cereghini. SQLEM: Fast clustering in SQL using the EM algorithm. In SIGMOD, pages 559-570, 2000.
    • (2000) SIGMOD , pp. 559-570
    • Ordonez, C.1    Cereghini, P.2
  • 35
    • 4344647570 scopus 로고    scopus 로고
    • Efficient disk-based k-means clustering for relational databases
    • C. Ordonez and E. Omiecinski. Efficient disk-based k-means clustering for relational databases. TKDE, 16:909-921, 2004.
    • (2004) TKDE , vol.16 , pp. 909-921
    • Ordonez, C.1    Omiecinski, E.2
  • 36
    • 84937938726 scopus 로고    scopus 로고
    • On integrated clustering and outlier detection
    • L. Ott, L. Pang, F. T. Ramos, and S. Chawla. On integrated clustering and outlier detection. In NIPS, pages 1359-1367, 2014.
    • (2014) NIPS , pp. 1359-1367
    • Ott, L.1    Pang, L.2    Ramos, F.T.3    Chawla, S.4
  • 37
    • 0345359208 scopus 로고    scopus 로고
    • LOCI: Fast outlier detection using the local correlation integral
    • S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos. LOCI: Fast outlier detection using the local correlation integral. In ICDE, pages 315-326, 2003.
    • (2003) ICDE , pp. 315-326
    • Papadimitriou, S.1    Kitagawa, H.2    Gibbons, P.3    Faloutsos, C.4
  • 38
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In SIGMOD, pages 427-438, 2000.
    • (2000) SIGMOD , pp. 427-438
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.