-
1
-
-
70449722914
-
Adaptive sampling for k-means clustering
-
A. Aggarwal, A. Deshpande, and R. Kannan. Adaptive sampling for k-means clustering. In RANDOM, pages 15-28, 2009.
-
(2009)
RANDOM
, pp. 15-28
-
-
Aggarwal, A.1
Deshpande, A.2
Kannan, R.3
-
2
-
-
0034832620
-
Outlier detection for high dimensional data
-
C. Aggarwal and P. Yu. Outlier detection for high dimensional data. In SIGMOD, pages 37-46, 2001.
-
(2001)
SIGMOD
, pp. 37-46
-
-
Aggarwal, C.1
Yu, P.2
-
4
-
-
85039571873
-
A linear method for deviation detection in large databases
-
A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation detection in large databases. In KDD, pages 164-169, 1996.
-
(1996)
KDD
, pp. 164-169
-
-
Arning, A.1
Agrawal, R.2
Raghavan, P.3
-
5
-
-
84969135721
-
k-means++: the advantages of careful seeding
-
D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In SODA, pages 1027-1035, 2007.
-
(2007)
SODA
, pp. 1027-1035
-
-
Arthur, D.1
Vassilvitskii, S.2
-
6
-
-
84863760691
-
Scalable k-means++
-
B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii. Scalable k-means++. PVLDB, 5(7):622-633, 2012.
-
(2012)
PVLDB
, vol.5
, Issue.7
, pp. 622-633
-
-
Bahmani, B.1
Moseley, B.2
Vattani, A.3
Kumar, R.4
Vassilvitskii, S.5
-
7
-
-
77952380096
-
Mining distance-based outliers in near linear time with randomization and a simple pruning rule
-
S. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In KDD, pages 29-38, 2003.
-
(2003)
KDD
, pp. 29-38
-
-
Bay, S.1
Schwabacher, M.2
-
8
-
-
84892062680
-
Survey of clustering data mining techniques
-
J. Kogan, C. K. Nicholas, and M. Teboulle, editors. Springer
-
P. Berkhin. Survey of clustering data mining techniques. In J. Kogan, C. K. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent Advances in Clustering. Springer, 2006.
-
(2006)
Grouping Multidimensional Data: Recent Advances in Clustering
-
-
Berkhin, P.1
-
9
-
-
57149146298
-
Outlier-robust clustering using independent components
-
C. Bohm, C. Faloutsos, and C. Plant. Outlier-robust clustering using independent components. In SIGMOD, pages 185-198, 2008.
-
(2008)
SIGMOD
, pp. 185-198
-
-
Bohm, C.1
Faloutsos, C.2
Plant, C.3
-
10
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying density-based local outliers. SIGMOD Record, 29(2):93-104, 2000.
-
(2000)
SIGMOD Record
, vol.29
, Issue.2
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.-P.2
Ng, R.T.3
Sander, J.4
-
11
-
-
26944440987
-
Algorithms for facility location problems with outliers
-
M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Algorithms for facility location problems with outliers. In SODA, pages 642-651, 2001.
-
(2001)
SODA
, pp. 642-651
-
-
Charikar, M.1
Khuller, S.2
Mount, D.M.3
Narasimhan, G.4
-
12
-
-
84960498671
-
k-means-: A unified approach to clustering and outlier detection
-
S. Chawla and A. Gionis. k-means-: A unified approach to clustering and outlier detection. In ICDM, pages 189-197, 2013.
-
(2013)
ICDM
, pp. 189-197
-
-
Chawla, S.1
Gionis, A.2
-
13
-
-
51849153520
-
A constant factor approximation algorithm for k-median clustering with outliers
-
K. Chen. A constant factor approximation algorithm for k-median clustering with outliers. In SODA, pages 826-835, 2008.
-
(2008)
SODA
, pp. 826-835
-
-
Chen, K.1
-
14
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In AAAI, pages 226-231, 1996.
-
(1996)
AAAI
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
16
-
-
35348830377
-
A PTAS for k-means clustering based on weak coresets
-
D. Feldman, M. Monemizadeh, and C. Sohler. A PTAS for k-means clustering based on weak coresets. In SOCG, pages 11-18, 2007.
-
(2007)
SOCG
, pp. 11-18
-
-
Feldman, D.1
Monemizadeh, M.2
Sohler, C.3
-
17
-
-
0038633423
-
Clustering data streams: Theory and practice
-
S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams: Theory and practice. TKDE, 15(3):515-528, 2003.
-
(2003)
TKDE
, vol.15
, Issue.3
, pp. 515-528
-
-
Guha, S.1
Meyerson, A.2
Mishra, N.3
Motwani, R.4
O'Callaghan, L.5
-
18
-
-
0032091595
-
CURE: An efficient clustering algorithm for large databases
-
S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for large databases. In SIGMOD, pages 73-84, 1998.
-
(1998)
SIGMOD
, pp. 73-84
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
19
-
-
19944363201
-
Research issues in automatic database clustering
-
S. Guinepain and L. Gruenwald. Research issues in automatic database clustering. SIGMOD Record, 34(1):33-38, 2005.
-
(2005)
SIGMOD Record
, vol.34
, Issue.1
, pp. 33-38
-
-
Guinepain, S.1
Gruenwald, L.2
-
20
-
-
77954912225
-
Simpler analyses of local search algorithms for facility location
-
0809.2554
-
A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility location. CoRR, abs/0809.2554, 2008.
-
(2008)
CoRR
-
-
Gupta, A.1
Tangwongsan, K.2
-
21
-
-
33846811413
-
Smaller coresets for k-median and k-means clustering
-
S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering. Discrete & Computational Geometry, 37(1):3-19, 2007.
-
(2007)
Discrete & Computational Geometry
, vol.37
, Issue.1
, pp. 3-19
-
-
Peled-Har, S.1
Kushal, A.2
-
22
-
-
85140527321
-
An efficient approach to clustering in large multimedia databases with noise
-
A. Hinneburg and D. A. Keim. An efficient approach to clustering in large multimedia databases with noise. In KDD, pages 58-65, 1998.
-
(1998)
KDD
, pp. 58-65
-
-
Hinneburg, A.1
Keim, D.A.2
-
24
-
-
2442683961
-
A local search approximation algorithm for k-means clustering
-
T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. A local search approximation algorithm for k-means clustering. Comput. Geom., 28(2-3):89-112, 2004.
-
(2004)
Comput. Geom.
, vol.28
, Issue.2-3
, pp. 89-112
-
-
Kanungo, T.1
Mount, D.M.2
Netanyahu, N.S.3
Piatko, C.D.4
Silverman, R.5
Wu, A.Y.6
-
25
-
-
0003858566
-
Algorithms for mining distance-based outliers in large datasets
-
E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. In VLDB, pages 392-403, 1998.
-
(1998)
VLDB
, pp. 392-403
-
-
Knorr, E.1
Ng, R.2
-
26
-
-
0003203996
-
A unified notion of outliers: Properties and computation
-
E. M. Knorr and R. T. Ng. A unified notion of outliers: Properties and computation. In KDD, pages 19-22, 1997.
-
(1997)
KDD
, pp. 19-22
-
-
Knorr, E.M.1
Ng, R.T.2
-
27
-
-
11244288693
-
A simple linear time (1+ε)-approximation algorithm for k-means clustering in any dimensions
-
A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1+ε)-approximation algorithm for k-means clustering in any dimensions. In FOCS, pages 454-462, 2004.
-
(2004)
FOCS
, pp. 454-462
-
-
Kumar, A.1
Sabharwal, Y.2
Sen, S.3
-
30
-
-
0012905555
-
Finding intensional knowledge of distance-based outliers
-
K. E. M. and N. R. T.
-
K. E. M. and N. R. T. Finding intensional knowledge of distance-based outliers. In VLDB, pages 211-222, 1999.
-
(1999)
VLDB
, pp. 211-222
-
-
-
31
-
-
84965161129
-
Fast distributed k-center clustering with outliers on massive data
-
G. Malkomes, M. Kusner, W. Chen, K. Weinberger, and B. Moseley. Fast distributed k-center clustering with outliers on massive data. In NIPS, pages 1063-1071, 2015.
-
(2015)
NIPS
, pp. 1063-1071
-
-
Malkomes, G.1
Kusner, M.2
Chen, W.3
Weinberger, K.4
Moseley, B.5
-
32
-
-
51849117754
-
Streaming algorithms for k-center clustering with outliers and with anonymity
-
R. M. McCutchen and S. Khuller. Streaming algorithms for k-center clustering with outliers and with anonymity. In APPROX, pages 165-178, 2008.
-
(2008)
APPROX
, pp. 165-178
-
-
McCutchen, R.M.1
Khuller, S.2
-
33
-
-
85008009667
-
Integrating k-means clustering with a relational DBMS using SQL
-
C. Ordonez. Integrating k-means clustering with a relational DBMS using SQL. TKDE, 18:188-201, 2006.
-
(2006)
TKDE
, vol.18
, pp. 188-201
-
-
Ordonez, C.1
-
34
-
-
0039845361
-
SQLEM: Fast clustering in SQL using the EM algorithm
-
C. Ordonez and P. Cereghini. SQLEM: Fast clustering in SQL using the EM algorithm. In SIGMOD, pages 559-570, 2000.
-
(2000)
SIGMOD
, pp. 559-570
-
-
Ordonez, C.1
Cereghini, P.2
-
35
-
-
4344647570
-
Efficient disk-based k-means clustering for relational databases
-
C. Ordonez and E. Omiecinski. Efficient disk-based k-means clustering for relational databases. TKDE, 16:909-921, 2004.
-
(2004)
TKDE
, vol.16
, pp. 909-921
-
-
Ordonez, C.1
Omiecinski, E.2
-
36
-
-
84937938726
-
On integrated clustering and outlier detection
-
L. Ott, L. Pang, F. T. Ramos, and S. Chawla. On integrated clustering and outlier detection. In NIPS, pages 1359-1367, 2014.
-
(2014)
NIPS
, pp. 1359-1367
-
-
Ott, L.1
Pang, L.2
Ramos, F.T.3
Chawla, S.4
-
37
-
-
0345359208
-
LOCI: Fast outlier detection using the local correlation integral
-
S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos. LOCI: Fast outlier detection using the local correlation integral. In ICDE, pages 315-326, 2003.
-
(2003)
ICDE
, pp. 315-326
-
-
Papadimitriou, S.1
Kitagawa, H.2
Gibbons, P.3
Faloutsos, C.4
-
38
-
-
0039845384
-
Efficient algorithms for mining outliers from large data sets
-
S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In SIGMOD, pages 427-438, 2000.
-
(2000)
SIGMOD
, pp. 427-438
-
-
Ramaswamy, S.1
Rastogi, R.2
Shim, K.3
-
39
-
-
37549018049
-
Top 10 algorithms in data mining
-
X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg. Top 10 algorithms in data mining. Knowl. Inf. Syst., 14:1-37, 2007.
-
(2007)
Knowl. Inf. Syst.
, vol.14
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Ross Quinlan, J.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
Zhou, Z.-H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
|