-
1
-
-
0000108833
-
-
J.L. Bentley and J.B. Saxe. Decomposable searching problems I: Static-to-dynamic transformation. J. Algorithms, 1(4):301-358. 1980, pages 301-358, 1980.
-
J.L. Bentley and J.B. Saxe. Decomposable searching problems I: Static-to-dynamic transformation. J. Algorithms, 1(4):301-358. 1980, pages 301-358, 1980.
-
-
-
-
4
-
-
0038784715
-
Approximation schemes for clustering problems
-
W. Fernandez de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation schemes for clustering problems. Proc. 35th Annu. ACM Sympos. Theory Comput. (STOC), pages 50-58, 2003.
-
(2003)
Proc. 35th Annu. ACM Sympos. Theory Comput. (STOC)
, pp. 50-58
-
-
Fernandez de la Vega, W.1
Karpinski, M.2
Kenyon, C.3
Rabani, Y.4
-
5
-
-
35348888242
-
-
M. Effros and L.J. Schulman. Deterministic clustering with data nets. Report TR04-085, Elec. Colloq. Comp. Complexity, http://www.eccc.uni-trier.de/ eccc-reports/2004/TR04-085, 2003.
-
M. Effros and L.J. Schulman. Deterministic clustering with data nets. Report TR04-085, Elec. Colloq. Comp. Complexity, http://www.eccc.uni-trier.de/ eccc-reports/2004/TR04-085, 2003.
-
-
-
-
8
-
-
0002192516
-
Decision theoretic generalizations of the pac model for neural net and other learning applications
-
D. Haussler. Decision theoretic generalizations of the pac model for neural net and other learning applications. Information and Computation, 100(1):78-150, 1992.
-
(1992)
Information and Computation
, vol.100
, Issue.1
, pp. 78-150
-
-
Haussler, D.1
-
12
-
-
0027928863
-
Applications of weighted voronoi diagrams and randomization to variance-based k-clustering
-
M. Inaba, N. Katoh, and H. Imai. Applications of weighted voronoi diagrams and randomization to variance-based k-clustering. Proc. 10th Annu. ACM Sympos. Comput. Geom.(SoCG), pages 332-339, 1994.
-
(1994)
Proc. 10th Annu. ACM Sympos. Comput. Geom.(SoCG)
, pp. 332-339
-
-
Inaba, M.1
Katoh, N.2
Imai, H.3
-
13
-
-
11244288693
-
A simple linear time (1 + ε) -approximation algorithm, for k-means clustering in any dimensions
-
A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1 + ε) -approximation algorithm, for k-means clustering in any dimensions. Proc. 45th Annual Symposium on Foundations of Computer Science, pages 454-462, 2004.
-
(2004)
Proc. 45th Annual Symposium on Foundations of Computer Science
, pp. 454-462
-
-
Kumar, A.1
Sabharwal, Y.2
Sen, S.3
-
14
-
-
26444519161
-
Linear time algorithms for clustering problems in any dimensions
-
A. Kumar, Y. Sabharwal, and S. Sen. Linear time algorithms for clustering problems in any dimensions. Proc. 32nd Annual Internat. Colloquium on Automata, Languages, and Programming (ICALP), pages 1374-1385, 2005.
-
(2005)
Proc. 32nd Annual Internat. Colloquium on Automata, Languages, and Programming (ICALP)
, pp. 1374-1385
-
-
Kumar, A.1
Sabharwal, Y.2
Sen, S.3
-
16
-
-
0000652415
-
The geometry of graphs and some of its algorithmic applications
-
N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica, 15(2):215-245, 1995.
-
(1995)
Combinatorica
, vol.15
, Issue.2
, pp. 215-245
-
-
Linial, N.1
London, E.2
Rabinovich, Y.3
-
17
-
-
0034417244
-
On approximate geometric k-clustering
-
J. Matousek. On approximate geometric k-clustering. Discrete Comput. Geom., 24:61-84, 2000.
-
(2000)
Discrete Comput. Geom
, vol.24
, pp. 61-84
-
-
Matousek, J.1
-
18
-
-
3142729920
-
Optimal time bounds for approximate clustering
-
R.R. Menu and C.G. Plaxton. Optimal time bounds for approximate clustering. Machine Learning, 56:35-60, 2004.
-
(2004)
Machine Learning
, vol.56
, pp. 35-60
-
-
Menu, R.R.1
Plaxton, C.G.2
|