메뉴 건너뛰기




Volumn 5687 LNCS, Issue , 2009, Pages 15-28

Adaptive sampling for k-means clustering

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE SAMPLING; BI-CRITERIA; CHARIKAR; CONSTANT FACTOR APPROXIMATION; CONSTANT FACTORS; K-CENTER; K-MEANS; K-MEANS CLUSTERING;

EID: 70449722914     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-03685-9_2     Document Type: Conference Paper
Times cited : (141)

References (24)
  • 1
    • 62249143532 scopus 로고    scopus 로고
    • NP-hardness of Euclidean sum-of-squares clustering
    • ADHP09
    • [ADHP09] Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Machine Learning 75(2), 245-248 (2009)
    • (2009) Machine Learning , vol.75 , Issue.2 , pp. 245-248
    • Aloise, D.1    Deshpande, A.2    Hansen, P.3    Popat, P.4
  • 6
    • 77954653167 scopus 로고    scopus 로고
    • On coresets for k-median and k-means clustering in metric and euclidean spaces and their applications
    • Che09
    • [Che09] Chen, K.: On coresets for k-median and k-means clustering in metric and euclidean spaces and their applications. Submitted to SIAM Journal on Computing (SICOMP) (2009)
    • (2009) Submitted to SIAM Journal on Computing (SICOMP)
    • Chen, K.1
  • 8
    • 62249180094 scopus 로고    scopus 로고
    • The hardness of k-means clustering
    • Das08, Tech. Report CS2008-0916, UC San Diego
    • [Das08] Dasgupta, S.: The hardness of k-means clustering, Tech. Report CS2008-0916, UC San Diego (2008)
    • (2008)
    • Dasgupta, S.1
  • 11
    • 0038633423 scopus 로고    scopus 로고
    • [GMM+03] Guha, S., Meyerson, A., Mishra, N., Motwani, R., O'Callaghan, L.: Clustering data streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineering 15(3), 515-528 (2003)
    • [GMM+03] Guha, S., Meyerson, A., Mishra, N., Motwani, R., O'Callaghan, L.: Clustering data streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineering 15(3), 515-528 (2003)
  • 12
    • 0021938963 scopus 로고
    • Clustering to minimize the maximum intercluster distance
    • Gon85
    • [Gon85] Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theoretical Computer Science 38, 293-306 (1985)
    • (1985) Theoretical Computer Science , vol.38 , pp. 293-306
    • Gonzalez, T.1
  • 13
    • 4544303932 scopus 로고    scopus 로고
    • On core-sets for k-means and k-median clustering
    • HPM04, STOC, pp
    • [HPM04] Har-Peled, S., Mazumdar, S.: On core-sets for k-means and k-median clustering. In: ACM Symposium on Theory of Computing (STOC), pp. 291-300 (2004)
    • (2004) ACM Symposium on Theory of Computing , pp. 291-300
    • Har-Peled, S.1    Mazumdar, S.2
  • 14
    • 0000682161 scopus 로고    scopus 로고
    • Approximation algorithms for metric facility loca- tion and k-median problems using the primal-dual schema and Lagrangian relaxation
    • JV01
    • [JV01] Jain, K., Vazirani, V.: Approximation algorithms for metric facility loca- tion and k-median problems using the primal-dual schema and Lagrangian relaxation. Journal of ACM 48, 274-296 (2001)
    • (2001) Journal of ACM , vol.48 , pp. 274-296
    • Jain, K.1    Vazirani, V.2
  • 15
    • 2442683961 scopus 로고    scopus 로고
    • [KMN+04] Kanugo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: A local search approximation algorithm for k-means clustering. Computational Geometry 28(2-3), 89-112 (2004)
    • [KMN+04] Kanugo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: A local search approximation algorithm for k-means clustering. Computational Geometry 28(2-3), 89-112 (2004)
  • 16
    • 70449725861 scopus 로고    scopus 로고
    • [KNV08] Kanade, G., Nimbhorkar, P., Varadarajan, K.: On the NP-hardness of the 2-means problem (unpublished manuscript) (2008)
    • [KNV08] Kanade, G., Nimbhorkar, P., Varadarajan, K.: On the NP-hardness of the 2-means problem (unpublished manuscript) (2008)
  • 17
    • 11244288693 scopus 로고    scopus 로고
    • A simple linear time (1 + ε)- approximation algorithm for k-means clustering in any dimensions
    • KSS04
    • [KSS04] Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1 + ε)- approximation algorithm for k-means clustering in any dimensions. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 454-462 (2004)
    • (2004) IEEE Symposium on Foundations of Computer Science (FOCS) , pp. 454-462
    • Kumar, A.1    Sabharwal, Y.2    Sen, S.3
  • 18
    • 0020102027 scopus 로고
    • Least squares quantization in pcm
    • Llo82
    • [Llo82] Lloyd, S.: Least squares quantization in pcm. IEEE Transactions on Information Theory 28(2), 129-136 (1982)
    • (1982) IEEE Transactions on Information Theory , vol.28 , Issue.2 , pp. 129-136
    • Lloyd, S.1
  • 19
    • 0034417244 scopus 로고    scopus 로고
    • On approximate geometric k-clustering
    • Mat00
    • [Mat00] Matoušek, J.: On approximate geometric k-clustering. Discrete and Computational Geometry 24(1), 61-84 (2000)
    • (2000) Discrete and Computational Geometry , vol.24 , Issue.1 , pp. 61-84
    • Matoušek, J.1
  • 21
    • 67650468452 scopus 로고    scopus 로고
    • The planar k-means problem is NP-hard
    • MNV09, Das, S, Uehara, R, eds, WALCOM 2009, Springer, Heidelberg
    • [MNV09] Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is NP-hard. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 274-285. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5431 , pp. 274-285
    • Mahajan, M.1    Nimbhorkar, P.2    Varadarajan, K.3
  • 22
    • 70449712729 scopus 로고    scopus 로고
    • Optimal time bounds for approximate clustering
    • MP02
    • [MP02] Mettu, R., Plaxton, C.: Optimal time bounds for approximate clustering. Machine Learning, 344-351 (2002)
    • (2002) Machine Learning , vol.344-351
    • Mettu, R.1    Plaxton, C.2
  • 24
    • 70949100815 scopus 로고    scopus 로고
    • [Vat09] Vattani, A.: k-means requires exponentially many iterations even in the plane. In: Annual Symposium on Computational Geometry (SOCG) (2009)
    • [Vat09] Vattani, A.: k-means requires exponentially many iterations even in the plane. In: Annual Symposium on Computational Geometry (SOCG) (2009)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.