메뉴 건너뛰기




Volumn 211, Issue , 2016, Pages 72-83

Photovoltaic forecast based on hybrid PCA–LSSVM using dimensionality reducted data

Author keywords

Dimensionality reduction; Least squares support vector machines; Photovoltaic forecast; Principal component analysis; Quadratic Renyi entropy

Indexed keywords

CLIMATE MODELS; CLUSTERING ALGORITHMS; FORECASTING; PHOTOVOLTAIC CELLS; PRINCIPAL COMPONENT ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 84991396324     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.01.104     Document Type: Article
Times cited : (69)

References (42)
  • 1
    • 79959375425 scopus 로고    scopus 로고
    • Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods
    • [1] De Giorgi, M.G., Ficarella, A., Tarantino, M., Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 36:7 (2011), 3968–3978.
    • (2011) Energy , vol.36 , Issue.7 , pp. 3968-3978
    • De Giorgi, M.G.1    Ficarella, A.2    Tarantino, M.3
  • 2
    • 78650561071 scopus 로고    scopus 로고
    • Error analysis of short term wind power prediction models
    • [2] De Giorgi, M.G., Ficarella, A., Tarantino, M., Error analysis of short term wind power prediction models. Appl. Energy 88 (2011), 1298–1311.
    • (2011) Appl. Energy , vol.88 , pp. 1298-1311
    • De Giorgi, M.G.1    Ficarella, A.2    Tarantino, M.3
  • 3
    • 47149095417 scopus 로고    scopus 로고
    • Artificial Intelligence Techniques for Photovoltaic Applications: a Review Progr
    • [3] Mellit, A., Kalogirou, S.A., Artificial Intelligence Techniques for Photovoltaic Applications: a Review Progr. Energy Combust. Sci. 34:5 (2008), 574–632.
    • (2008) Energy Combust. Sci. , vol.34 , Issue.5 , pp. 574-632
    • Mellit, A.1    Kalogirou, S.A.2
  • 4
    • 0032122184 scopus 로고    scopus 로고
    • Short-term forecasting of wind speed and related electrical power
    • [4] Alexiadis, M., Short-term forecasting of wind speed and related electrical power. Sol. Energy 63:1 (1998), 61–68.
    • (1998) Sol. Energy , vol.63 , Issue.1 , pp. 61-68
    • Alexiadis, M.1
  • 5
    • 0036525799 scopus 로고    scopus 로고
    • Solar radiation estimation using artificial neural networks
    • [5] Dorvlo, A.S.S., Jervase, J.A., Lawati, A.A., Solar radiation estimation using artificial neural networks. Appl. Energy 71 (2002), 307–319.
    • (2002) Appl. Energy , vol.71 , pp. 307-319
    • Dorvlo, A.S.S.1    Jervase, J.A.2    Lawati, A.A.3
  • 6
    • 84898966331 scopus 로고    scopus 로고
    • Wind forecasting using Principal Component Analysis
    • [6] Skittides, C., Früh, W., Wind forecasting using Principal Component Analysis. Renew. Energy 69 (2014), 365–374.
    • (2014) Renew. Energy , vol.69 , pp. 365-374
    • Skittides, C.1    Früh, W.2
  • 7
    • 84906911087 scopus 로고    scopus 로고
    • Congedo PM.Comparison between wind power prediction models based on wavelet decomposition with leastsquares support vector machine (LS-SVM) and artificial neural network (ANN)
    • [7] De Giorgi, M.G., Campilongo, S., Ficarella, A., Congedo PM.Comparison between wind power prediction models based on wavelet decomposition with leastsquares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 7:8 (2014), 5251–5272.
    • (2014) Energies , vol.7 , Issue.8 , pp. 5251-5272
    • De Giorgi, M.G.1    Campilongo, S.2    Ficarella, A.3
  • 8
    • 84929332562 scopus 로고    scopus 로고
    • Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate
    • [8] De Giorgi, M.G., Congedo, P.M., Malvoni, M., Laforgia, D., Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate. Energy Convers. Manag. 100 (2015), 117–130, 10.1016/j.enconman.2015.04.078.
    • (2015) Energy Convers. Manag. , vol.100 , pp. 117-130
    • De Giorgi, M.G.1    Congedo, P.M.2    Malvoni, M.3    Laforgia, D.4
  • 9
    • 84955361347 scopus 로고    scopus 로고
    • Hybrid Machine Learning Forecasting of Solar Radiation Values, Neurocomputing,
    • [9] Y. Gala, A. Fernández, J. Díaz, J.R. Dorronsoro, Hybrid Machine Learning Forecasting of Solar Radiation Values, Neurocomputing, 10.1016/j.neucom.2015.02.078.
    • Gala, Y.1    Fernández, A.2    Díaz, J.3    Dorronsoro, J.R.4
  • 10
    • 0037695279 scopus 로고    scopus 로고
    • Least Squares Support Vector Machines
    • World Scientific Publishing Co. Singapore
    • [10] Suykens, J.A.K., Van Gestel, T., Debrebanter, J., Least Squares Support Vector Machines. 2002, World Scientific Publishing Co., Singapore.
    • (2002)
    • Suykens, J.A.K.1    Van Gestel, T.2    Debrebanter, J.3
  • 11
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: the wavelet representation
    • [11] Mallat, S.G., A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11:7 (1989), 674–693.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 12
    • 84881498920 scopus 로고    scopus 로고
    • Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme
    • [12] Shayeghi, H., Ghasem, A., Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme. Energy Convers. Manag. 74 (2013), 482–491.
    • (2013) Energy Convers. Manag. , vol.74 , pp. 482-491
    • Shayeghi, H.1    Ghasem, A.2
  • 13
    • 78349311143 scopus 로고    scopus 로고
    • Forecasting of preprocessed daily solar radiation time series using neural networks
    • [13] Paoli, C., Voyant, C., Muselli, M., Nivet, M., Forecasting of preprocessed daily solar radiation time series using neural networks. Sol. Energy 84:12 (2010), 2146–2160.
    • (2010) Sol. Energy , vol.84 , Issue.12 , pp. 2146-2160
    • Paoli, C.1    Voyant, C.2    Muselli, M.3    Nivet, M.4
  • 14
    • 84898966331 scopus 로고    scopus 로고
    • Wind forecasting using principal component analysis
    • [14] Skittides, C., Früh, W.G., Wind forecasting using principal component analysis. Renew. Energy(69), 2014, 365–374 http://dx.doi.org/10.1016/j.renene.2014.03.068.
    • (2014) Renew. Energy , Issue.69 , pp. 365-374
    • Skittides, C.1    Früh, W.G.2
  • 15
    • 84896043087 scopus 로고    scopus 로고
    • Regional forecasts and smoothing effect of photovoltaic power generation in Japan: an approach with principal component analysis
    • [15] Da Silva Fonseca Junior, J.G., Oozeki, T., Ohtake, H., Shimose, K., Takashima, T., Ogimoto, K., Regional forecasts and smoothing effect of photovoltaic power generation in Japan: an approach with principal component analysis. Renew. Energy(68), 2014, 403–413 http://dx.doi.org/10.1016/j.renene.2014.02.018.
    • (2014) Renew. Energy , Issue.68 , pp. 403-413
    • Da Silva Fonseca Junior, J.G.1    Oozeki, T.2    Ohtake, H.3    Shimose, K.4    Takashima, T.5    Ogimoto, K.6
  • 16
    • 25144508540 scopus 로고    scopus 로고
    • Load forecasting using fixed-size least squares support vector machines. Computational Intelligence and Bioinspired Systems
    • Springer Berlin, Heidelberg
    • [16] Espinoza, M., Suykens, A.K., De Moor, J., Load forecasting using fixed-size least squares support vector machines. Computational Intelligence and Bioinspired Systems. 2005, Springer, Berlin, Heidelberg, 1018–1026.
    • (2005) , pp. 1018-1026
    • Espinoza, M.1    Suykens, A.K.2    De Moor, J.3
  • 17
    • 84902532141 scopus 로고    scopus 로고
    • Wind power ramp event prediction with support vector machines. Hybrid Artificial Intelligence Systems
    • Springer International Publishing
    • [17] Oliver, k, Treiber, N.A., Sonnenschein, M., Wind power ramp event prediction with support vector machines. Hybrid Artificial Intelligence Systems. 2014, Springer International Publishing, 37–48.
    • (2014) , pp. 37-48
    • Oliver, K.1    Treiber, N.A.2    Sonnenschein, M.3
  • 18
    • 84938206905 scopus 로고    scopus 로고
    • Wind speed prediction using reduced support vector machines with feature selection
    • [18] Kong, X., Liu, X., Shi, R., Lee, K.Y., Wind speed prediction using reduced support vector machines with feature selection. Neurocomputing 169 (2015), 449–456, 10.1016/j.neucom.2014.09.090.
    • (2015) Neurocomputing , vol.169 , pp. 449-456
    • Kong, X.1    Liu, X.2    Shi, R.3    Lee, K.Y.4
  • 19
    • 84991408487 scopus 로고    scopus 로고
    • Statistical Learning Theory, Management Science, Wiley, New York, vol. 3, 1998, pp. 113–129, April 2006
    • [19] V. Vapnik, Statistical Learning Theory, Management Science, Wiley, New York, vol. 3, 1998, pp. 113–129, April 2006.
    • Vapnik, V.1
  • 20
    • 35148822781 scopus 로고    scopus 로고
    • Orthogonal series density estimation and the kernel eigenvalue problem
    • [20] Girolami, M., Orthogonal series density estimation and the kernel eigenvalue problem. Neural Comput. 10:6 (1998), 1455–1480.
    • (1998) Neural Comput. , vol.10 , Issue.6 , pp. 1455-1480
    • Girolami, M.1
  • 21
    • 0000350486 scopus 로고    scopus 로고
    • Using the Nystrom method to speed up kernel machines
    • [21] Williams, C., Seeger, M., Using the Nystrom method to speed up kernel machines. Proc. NIPS 13 (2000), 682–688.
    • (2000) Proc. NIPS , vol.13 , pp. 682-688
    • Williams, C.1    Seeger, M.2
  • 23
    • 85128500798 scopus 로고    scopus 로고
    • B. De Moor, Least squares support vector machines and primal space estimation, in: Proceedings of the IEEE 42nd Conference on Decision and Control, 2003, pp. 5716–5721.
    • [23] M. Espinoza, J.A.K. Suykens, B. De Moor, Least squares support vector machines and primal space estimation, in: Proceedings of the IEEE 42nd Conference on Decision and Control, 2003, pp. 5716–5721.
    • Espinoza, M.1    Suykens, J.A.K.2
  • 24
    • 0003410303 scopus 로고
    • Time Series predictions: Forecasting the Future and Understanding the Past
    • Addison-Wesley Reading
    • [24] Weigend, A.S., Gershenfeld, N.A., Time Series predictions: Forecasting the Future and Understanding the Past. 1994, Addison-Wesley, Reading.
    • (1994)
    • Weigend, A.S.1    Gershenfeld, N.A.2
  • 25
    • 33845299971 scopus 로고    scopus 로고
    • Information theoretic learning: Renyi's entropy and kernel perspectives
    • Springer Science & Business Media
    • [25] Principe, J.C., Information theoretic learning: Renyi's entropy and kernel perspectives. 2010, Springer Science & Business Media.
    • (2010)
    • Principe, J.C.1
  • 26
    • 84991297815 scopus 로고    scopus 로고
    • On measures of entropy and information Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, University of California Press, Berkeley, CA, 1, 1961, pp. 547–561.
    • [26] A. Renyi, On measures of entropy and information Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, University of California Press, Berkeley, CA, 1, 1961, pp. 547–561.
    • Renyi, A.1
  • 27
    • 84991284395 scopus 로고    scopus 로고
    • Introduction a la Theorie de Linformation, Calcul des Probabilites, 1966, Dunod, Paris.
    • [27] A. Renyi, Introduction a la Theorie de Linformation, Calcul des Probabilites, 1966, Dunod, Paris.
    • Renyi, A.1
  • 28
    • 85066260229 scopus 로고    scopus 로고
    • Sprayed Concrete lined Tunnels
    • CRC Press
    • [28] Thomas, A., Sprayed Concrete lined Tunnels. 2008, CRC Press.
    • (2008)
    • Thomas, A.1
  • 30
    • 34247548180 scopus 로고    scopus 로고
    • Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition
    • CRC Press
    • [30] Samarasinghe, S., Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition. 2006, CRC Press.
    • (2006)
    • Samarasinghe, S.1
  • 31
    • 84991299045 scopus 로고    scopus 로고
    • Engineering Statistics Handbook Section 6.5.5.2, Retrieved, 19 January.
    • [31] Engineering Statistics Handbook Section 6.5.5.2, Retrieved, 19 January, 2015.
    • (2015)
  • 32
    • 84991009422 scopus 로고    scopus 로고
    • Principal Component Analysis
    • second edition Springer New York
    • [32] Jolliffe, I.T., Principal Component Analysis. second edition, 2002, Springer, New York.
    • (2002)
    • Jolliffe, I.T.1
  • 33
    • 84873315894 scopus 로고    scopus 로고
    • Performance measurements of monocrystalline silicon PV modules in South-eastern Italy
    • [33] Congedo, P.M., Malvoni, M., Mele, M., De Giorgi, M.G., Performance measurements of monocrystalline silicon PV modules in South-eastern Italy. Energy Convers. Manag. 68 (2013), 1–10, 10.1016/j.enconman.2012.12.017.
    • (2013) Energy Convers. Manag. , vol.68 , pp. 1-10
    • Congedo, P.M.1    Malvoni, M.2    Mele, M.3    De Giorgi, M.G.4
  • 34
    • 84901231602 scopus 로고    scopus 로고
    • Photovoltaic power forecasting using statistical methods: Impact of weather data
    • [34] De Giorgi, M.G., Congedo, P.M., Malvoni, M., Photovoltaic power forecasting using statistical methods: Impact of weather data. IET Sci. Meas. Technol. 8:3 (2014), 90–97, 10.3182/20140824-6-ZA-1003.01184.
    • (2014) IET Sci. Meas. Technol. , vol.8 , Issue.3 , pp. 90-97
    • De Giorgi, M.G.1    Congedo, P.M.2    Malvoni, M.3
  • 35
    • 84893404743 scopus 로고    scopus 로고
    • M.G De Giorgi, P.M. Congedo, M. Malvoni, M. Tarantino, Short-term power forecasting by statistical methods for photovoltaic plants in south Italy. in: Proceedings of 4th IMEKO TC19 Symposium on Environmental Instrumentation and Measurements: Protection Environment, Climate Changes and Pollution Control.
    • [35] M.G De Giorgi, P.M. Congedo, M. Malvoni, M. Tarantino, Short-term power forecasting by statistical methods for photovoltaic plants in south Italy. in: Proceedings of 4th IMEKO TC19 Symposium on Environmental Instrumentation and Measurements: Protection Environment, Climate Changes and Pollution Control, 2013, pp. 171–175.
    • (2013) , pp. 171-175
  • 36
    • 84929783048 scopus 로고    scopus 로고
    • An integrated tool to monitor renewable energy flows and optimize the recharge of a fleet of plug-in electric vehicles in the campus of the University of Salento,
    • Proceedings of Preliminary results (2014) IFAC Volumes (IFAC-PapersOnline).
    • [36] T. Donateo, P.M. Congedo, M. Malvoni, F. Ingrosso, D. Laforgia, F. Ciancarelli, An integrated tool to monitor renewable energy flows and optimize the recharge of a fleet of plug-in electric vehicles in the campus of the University of Salento, in: Proceedings of Preliminary results (2014) IFAC Volumes (IFAC-PapersOnline), 19, pp. 7861–7866. 10.3182/20140824-6-ZA-1003.01184.
    • (2014) , vol.19 , pp. 7861-7866
    • Donateo, T.1    Congedo, P.M.2    Malvoni, M.3    Ingrosso, F.4    Laforgia, D.5    Ciancarelli, F.6
  • 37
    • 84891584184 scopus 로고    scopus 로고
    • Solar Engineering of Thermal Processes, 4th ed., 2013,.
    • [37] J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, 4th ed., 2013, 10.1002/9781118671603.
    • Duffie, J.A.1    Beckman, W.A.2
  • 38
    • 84991388263 scopus 로고    scopus 로고
    • [38] 〈 http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php〉.
  • 39
    • 84991318041 scopus 로고    scopus 로고
    • [39] 〈 http://www.esat.kuleuven.be/sista/lssvmlab/〉.
  • 40
    • 84991361702 scopus 로고    scopus 로고
    • Support Vector Machine Solvers, Large Scale Kernel Mach, 2007, pp. 301–320.
    • [40] L. Bottou, C.J. Lin, Support Vector Machine Solvers, Large Scale Kernel Mach, 2007, pp. 301–320.
    • Bottou, L.1    Lin, C.J.2
  • 42
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • [42] Chapelle, O., Training a support vector machine in the primal. Neural Comput. 19:5 (2007), 1155–1178.
    • (2007) Neural Comput. , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.