-
1
-
-
79959375425
-
Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods
-
[1] De Giorgi, M.G., Ficarella, A., Tarantino, M., Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 36:7 (2011), 3968–3978.
-
(2011)
Energy
, vol.36
, Issue.7
, pp. 3968-3978
-
-
De Giorgi, M.G.1
Ficarella, A.2
Tarantino, M.3
-
2
-
-
78650561071
-
Error analysis of short term wind power prediction models
-
[2] De Giorgi, M.G., Ficarella, A., Tarantino, M., Error analysis of short term wind power prediction models. Appl. Energy 88 (2011), 1298–1311.
-
(2011)
Appl. Energy
, vol.88
, pp. 1298-1311
-
-
De Giorgi, M.G.1
Ficarella, A.2
Tarantino, M.3
-
3
-
-
47149095417
-
Artificial Intelligence Techniques for Photovoltaic Applications: a Review Progr
-
[3] Mellit, A., Kalogirou, S.A., Artificial Intelligence Techniques for Photovoltaic Applications: a Review Progr. Energy Combust. Sci. 34:5 (2008), 574–632.
-
(2008)
Energy Combust. Sci.
, vol.34
, Issue.5
, pp. 574-632
-
-
Mellit, A.1
Kalogirou, S.A.2
-
4
-
-
0032122184
-
Short-term forecasting of wind speed and related electrical power
-
[4] Alexiadis, M., Short-term forecasting of wind speed and related electrical power. Sol. Energy 63:1 (1998), 61–68.
-
(1998)
Sol. Energy
, vol.63
, Issue.1
, pp. 61-68
-
-
Alexiadis, M.1
-
5
-
-
0036525799
-
Solar radiation estimation using artificial neural networks
-
[5] Dorvlo, A.S.S., Jervase, J.A., Lawati, A.A., Solar radiation estimation using artificial neural networks. Appl. Energy 71 (2002), 307–319.
-
(2002)
Appl. Energy
, vol.71
, pp. 307-319
-
-
Dorvlo, A.S.S.1
Jervase, J.A.2
Lawati, A.A.3
-
6
-
-
84898966331
-
Wind forecasting using Principal Component Analysis
-
[6] Skittides, C., Früh, W., Wind forecasting using Principal Component Analysis. Renew. Energy 69 (2014), 365–374.
-
(2014)
Renew. Energy
, vol.69
, pp. 365-374
-
-
Skittides, C.1
Früh, W.2
-
7
-
-
84906911087
-
Congedo PM.Comparison between wind power prediction models based on wavelet decomposition with leastsquares support vector machine (LS-SVM) and artificial neural network (ANN)
-
[7] De Giorgi, M.G., Campilongo, S., Ficarella, A., Congedo PM.Comparison between wind power prediction models based on wavelet decomposition with leastsquares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 7:8 (2014), 5251–5272.
-
(2014)
Energies
, vol.7
, Issue.8
, pp. 5251-5272
-
-
De Giorgi, M.G.1
Campilongo, S.2
Ficarella, A.3
-
8
-
-
84929332562
-
Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate
-
[8] De Giorgi, M.G., Congedo, P.M., Malvoni, M., Laforgia, D., Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate. Energy Convers. Manag. 100 (2015), 117–130, 10.1016/j.enconman.2015.04.078.
-
(2015)
Energy Convers. Manag.
, vol.100
, pp. 117-130
-
-
De Giorgi, M.G.1
Congedo, P.M.2
Malvoni, M.3
Laforgia, D.4
-
9
-
-
84955361347
-
Hybrid Machine Learning Forecasting of Solar Radiation Values, Neurocomputing,
-
[9] Y. Gala, A. Fernández, J. Díaz, J.R. Dorronsoro, Hybrid Machine Learning Forecasting of Solar Radiation Values, Neurocomputing, 10.1016/j.neucom.2015.02.078.
-
-
-
Gala, Y.1
Fernández, A.2
Díaz, J.3
Dorronsoro, J.R.4
-
10
-
-
0037695279
-
Least Squares Support Vector Machines
-
World Scientific Publishing Co. Singapore
-
[10] Suykens, J.A.K., Van Gestel, T., Debrebanter, J., Least Squares Support Vector Machines. 2002, World Scientific Publishing Co., Singapore.
-
(2002)
-
-
Suykens, J.A.K.1
Van Gestel, T.2
Debrebanter, J.3
-
11
-
-
0024700097
-
A theory for multiresolution signal decomposition: the wavelet representation
-
[11] Mallat, S.G., A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11:7 (1989), 674–693.
-
(1989)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.11
, Issue.7
, pp. 674-693
-
-
Mallat, S.G.1
-
12
-
-
84881498920
-
Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme
-
[12] Shayeghi, H., Ghasem, A., Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme. Energy Convers. Manag. 74 (2013), 482–491.
-
(2013)
Energy Convers. Manag.
, vol.74
, pp. 482-491
-
-
Shayeghi, H.1
Ghasem, A.2
-
13
-
-
78349311143
-
Forecasting of preprocessed daily solar radiation time series using neural networks
-
[13] Paoli, C., Voyant, C., Muselli, M., Nivet, M., Forecasting of preprocessed daily solar radiation time series using neural networks. Sol. Energy 84:12 (2010), 2146–2160.
-
(2010)
Sol. Energy
, vol.84
, Issue.12
, pp. 2146-2160
-
-
Paoli, C.1
Voyant, C.2
Muselli, M.3
Nivet, M.4
-
14
-
-
84898966331
-
Wind forecasting using principal component analysis
-
[14] Skittides, C., Früh, W.G., Wind forecasting using principal component analysis. Renew. Energy(69), 2014, 365–374 http://dx.doi.org/10.1016/j.renene.2014.03.068.
-
(2014)
Renew. Energy
, Issue.69
, pp. 365-374
-
-
Skittides, C.1
Früh, W.G.2
-
15
-
-
84896043087
-
Regional forecasts and smoothing effect of photovoltaic power generation in Japan: an approach with principal component analysis
-
[15] Da Silva Fonseca Junior, J.G., Oozeki, T., Ohtake, H., Shimose, K., Takashima, T., Ogimoto, K., Regional forecasts and smoothing effect of photovoltaic power generation in Japan: an approach with principal component analysis. Renew. Energy(68), 2014, 403–413 http://dx.doi.org/10.1016/j.renene.2014.02.018.
-
(2014)
Renew. Energy
, Issue.68
, pp. 403-413
-
-
Da Silva Fonseca Junior, J.G.1
Oozeki, T.2
Ohtake, H.3
Shimose, K.4
Takashima, T.5
Ogimoto, K.6
-
16
-
-
25144508540
-
Load forecasting using fixed-size least squares support vector machines. Computational Intelligence and Bioinspired Systems
-
Springer Berlin, Heidelberg
-
[16] Espinoza, M., Suykens, A.K., De Moor, J., Load forecasting using fixed-size least squares support vector machines. Computational Intelligence and Bioinspired Systems. 2005, Springer, Berlin, Heidelberg, 1018–1026.
-
(2005)
, pp. 1018-1026
-
-
Espinoza, M.1
Suykens, A.K.2
De Moor, J.3
-
17
-
-
84902532141
-
Wind power ramp event prediction with support vector machines. Hybrid Artificial Intelligence Systems
-
Springer International Publishing
-
[17] Oliver, k, Treiber, N.A., Sonnenschein, M., Wind power ramp event prediction with support vector machines. Hybrid Artificial Intelligence Systems. 2014, Springer International Publishing, 37–48.
-
(2014)
, pp. 37-48
-
-
Oliver, K.1
Treiber, N.A.2
Sonnenschein, M.3
-
18
-
-
84938206905
-
Wind speed prediction using reduced support vector machines with feature selection
-
[18] Kong, X., Liu, X., Shi, R., Lee, K.Y., Wind speed prediction using reduced support vector machines with feature selection. Neurocomputing 169 (2015), 449–456, 10.1016/j.neucom.2014.09.090.
-
(2015)
Neurocomputing
, vol.169
, pp. 449-456
-
-
Kong, X.1
Liu, X.2
Shi, R.3
Lee, K.Y.4
-
19
-
-
84991408487
-
-
Statistical Learning Theory, Management Science, Wiley, New York, vol. 3, 1998, pp. 113–129, April 2006
-
[19] V. Vapnik, Statistical Learning Theory, Management Science, Wiley, New York, vol. 3, 1998, pp. 113–129, April 2006.
-
-
-
Vapnik, V.1
-
20
-
-
35148822781
-
Orthogonal series density estimation and the kernel eigenvalue problem
-
[20] Girolami, M., Orthogonal series density estimation and the kernel eigenvalue problem. Neural Comput. 10:6 (1998), 1455–1480.
-
(1998)
Neural Comput.
, vol.10
, Issue.6
, pp. 1455-1480
-
-
Girolami, M.1
-
21
-
-
0000350486
-
Using the Nystrom method to speed up kernel machines
-
[21] Williams, C., Seeger, M., Using the Nystrom method to speed up kernel machines. Proc. NIPS 13 (2000), 682–688.
-
(2000)
Proc. NIPS
, vol.13
, pp. 682-688
-
-
Williams, C.1
Seeger, M.2
-
22
-
-
77249142782
-
Optimized fixed-size kernel models for large data sets
-
[22] De Brabanter, K., De Brabanter, J., Suykens, J.A., De Moor, B., Optimized fixed-size kernel models for large data sets. Comput. Stat. Data Anal. 54:6 (2010), 1484–1504.
-
(2010)
Comput. Stat. Data Anal.
, vol.54
, Issue.6
, pp. 1484-1504
-
-
De Brabanter, K.1
De Brabanter, J.2
Suykens, J.A.3
De Moor, B.4
-
23
-
-
85128500798
-
-
B. De Moor, Least squares support vector machines and primal space estimation, in: Proceedings of the IEEE 42nd Conference on Decision and Control, 2003, pp. 5716–5721.
-
[23] M. Espinoza, J.A.K. Suykens, B. De Moor, Least squares support vector machines and primal space estimation, in: Proceedings of the IEEE 42nd Conference on Decision and Control, 2003, pp. 5716–5721.
-
-
-
Espinoza, M.1
Suykens, J.A.K.2
-
24
-
-
0003410303
-
Time Series predictions: Forecasting the Future and Understanding the Past
-
Addison-Wesley Reading
-
[24] Weigend, A.S., Gershenfeld, N.A., Time Series predictions: Forecasting the Future and Understanding the Past. 1994, Addison-Wesley, Reading.
-
(1994)
-
-
Weigend, A.S.1
Gershenfeld, N.A.2
-
25
-
-
33845299971
-
Information theoretic learning: Renyi's entropy and kernel perspectives
-
Springer Science & Business Media
-
[25] Principe, J.C., Information theoretic learning: Renyi's entropy and kernel perspectives. 2010, Springer Science & Business Media.
-
(2010)
-
-
Principe, J.C.1
-
26
-
-
84991297815
-
-
On measures of entropy and information Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, University of California Press, Berkeley, CA, 1, 1961, pp. 547–561.
-
[26] A. Renyi, On measures of entropy and information Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, University of California Press, Berkeley, CA, 1, 1961, pp. 547–561.
-
-
-
Renyi, A.1
-
27
-
-
84991284395
-
-
Introduction a la Theorie de Linformation, Calcul des Probabilites, 1966, Dunod, Paris.
-
[27] A. Renyi, Introduction a la Theorie de Linformation, Calcul des Probabilites, 1966, Dunod, Paris.
-
-
-
Renyi, A.1
-
28
-
-
85066260229
-
Sprayed Concrete lined Tunnels
-
CRC Press
-
[28] Thomas, A., Sprayed Concrete lined Tunnels. 2008, CRC Press.
-
(2008)
-
-
Thomas, A.1
-
29
-
-
77249142782
-
Optimized fixed-size kernel models for large data sets
-
[29] De Brabanter, K., De Brabanter, J., Suykens, J.A.K., De Moor, B., Optimized fixed-size kernel models for large data sets. Comput. Stat. Data Anal. 54:6 (2010), 1484–1504, 10.1016/j.csda.2010.01.024.
-
(2010)
Comput. Stat. Data Anal.
, vol.54
, Issue.6
, pp. 1484-1504
-
-
De Brabanter, K.1
De Brabanter, J.2
Suykens, J.A.K.3
De Moor, B.4
-
30
-
-
34247548180
-
Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition
-
CRC Press
-
[30] Samarasinghe, S., Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition. 2006, CRC Press.
-
(2006)
-
-
Samarasinghe, S.1
-
31
-
-
84991299045
-
-
Engineering Statistics Handbook Section 6.5.5.2, Retrieved, 19 January.
-
[31] Engineering Statistics Handbook Section 6.5.5.2, Retrieved, 19 January, 2015.
-
(2015)
-
-
-
32
-
-
84991009422
-
Principal Component Analysis
-
second edition Springer New York
-
[32] Jolliffe, I.T., Principal Component Analysis. second edition, 2002, Springer, New York.
-
(2002)
-
-
Jolliffe, I.T.1
-
33
-
-
84873315894
-
Performance measurements of monocrystalline silicon PV modules in South-eastern Italy
-
[33] Congedo, P.M., Malvoni, M., Mele, M., De Giorgi, M.G., Performance measurements of monocrystalline silicon PV modules in South-eastern Italy. Energy Convers. Manag. 68 (2013), 1–10, 10.1016/j.enconman.2012.12.017.
-
(2013)
Energy Convers. Manag.
, vol.68
, pp. 1-10
-
-
Congedo, P.M.1
Malvoni, M.2
Mele, M.3
De Giorgi, M.G.4
-
34
-
-
84901231602
-
Photovoltaic power forecasting using statistical methods: Impact of weather data
-
[34] De Giorgi, M.G., Congedo, P.M., Malvoni, M., Photovoltaic power forecasting using statistical methods: Impact of weather data. IET Sci. Meas. Technol. 8:3 (2014), 90–97, 10.3182/20140824-6-ZA-1003.01184.
-
(2014)
IET Sci. Meas. Technol.
, vol.8
, Issue.3
, pp. 90-97
-
-
De Giorgi, M.G.1
Congedo, P.M.2
Malvoni, M.3
-
35
-
-
84893404743
-
-
M.G De Giorgi, P.M. Congedo, M. Malvoni, M. Tarantino, Short-term power forecasting by statistical methods for photovoltaic plants in south Italy. in: Proceedings of 4th IMEKO TC19 Symposium on Environmental Instrumentation and Measurements: Protection Environment, Climate Changes and Pollution Control.
-
[35] M.G De Giorgi, P.M. Congedo, M. Malvoni, M. Tarantino, Short-term power forecasting by statistical methods for photovoltaic plants in south Italy. in: Proceedings of 4th IMEKO TC19 Symposium on Environmental Instrumentation and Measurements: Protection Environment, Climate Changes and Pollution Control, 2013, pp. 171–175.
-
(2013)
, pp. 171-175
-
-
-
36
-
-
84929783048
-
An integrated tool to monitor renewable energy flows and optimize the recharge of a fleet of plug-in electric vehicles in the campus of the University of Salento,
-
Proceedings of Preliminary results (2014) IFAC Volumes (IFAC-PapersOnline).
-
[36] T. Donateo, P.M. Congedo, M. Malvoni, F. Ingrosso, D. Laforgia, F. Ciancarelli, An integrated tool to monitor renewable energy flows and optimize the recharge of a fleet of plug-in electric vehicles in the campus of the University of Salento, in: Proceedings of Preliminary results (2014) IFAC Volumes (IFAC-PapersOnline), 19, pp. 7861–7866. 10.3182/20140824-6-ZA-1003.01184.
-
(2014)
, vol.19
, pp. 7861-7866
-
-
Donateo, T.1
Congedo, P.M.2
Malvoni, M.3
Ingrosso, F.4
Laforgia, D.5
Ciancarelli, F.6
-
37
-
-
84891584184
-
-
Solar Engineering of Thermal Processes, 4th ed., 2013,.
-
[37] J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, 4th ed., 2013, 10.1002/9781118671603.
-
-
-
Duffie, J.A.1
Beckman, W.A.2
-
38
-
-
84991388263
-
-
[38] 〈 http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php〉.
-
-
-
-
39
-
-
84991318041
-
-
[39] 〈 http://www.esat.kuleuven.be/sista/lssvmlab/〉.
-
-
-
-
40
-
-
84991361702
-
-
Support Vector Machine Solvers, Large Scale Kernel Mach, 2007, pp. 301–320.
-
[40] L. Bottou, C.J. Lin, Support Vector Machine Solvers, Large Scale Kernel Mach, 2007, pp. 301–320.
-
-
-
Bottou, L.1
Lin, C.J.2
-
41
-
-
34548170925
-
Fast iterative kernel principal component analysis
-
[41] Günter, S., Schraudolph, N.N., Vishwanathan, S.V.N., Fast iterative kernel principal component analysis. J. Mach. Learn. Res. 8 (2007), 1893–1918.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 1893-1918
-
-
Günter, S.1
Schraudolph, N.N.2
Vishwanathan, S.V.N.3
-
42
-
-
34247849152
-
Training a support vector machine in the primal
-
[42] Chapelle, O., Training a support vector machine in the primal. Neural Comput. 19:5 (2007), 1155–1178.
-
(2007)
Neural Comput.
, vol.19
, Issue.5
, pp. 1155-1178
-
-
Chapelle, O.1
|