메뉴 건너뛰기




Volumn 42, Issue 7, 2013, Pages 1737-1742

Multi-scale modeling method based on EMD-LSSVM and its application

Author keywords

Bayesian method; Empirical mode decomposition; Evidence framework; Laser gyro drift prediction; Least squares support vector machines

Indexed keywords

BAYESIAN METHODS; EMPIRICAL MODE DECOMPOSITION; EVIDENCE FRAMEWORK; GYRO DRIFT; LEAST SQUARES SUPPORT VECTOR MACHINES;

EID: 84883858082     PISSN: 10072276     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1)

References (16)
  • 2
    • 38949207498 scopus 로고    scopus 로고
    • Application of median filter in wavelet domain in the signal processing of the laser gyro
    • (in Chinese)
    • Peng Yunhui, Liu Yunfeng, Yang Xiaogang, et al. Application of median filter in wavelet domain in the signal processing of the laser gyro [J]. Infrared and Laser Engineering, 2007, 36(1): 823-826. (in Chinese)
    • (2007) Infrared and Laser Engineering , vol.36 , Issue.1 , pp. 823-826
    • Peng, Y.1    Liu, Y.2    Yang, X.3
  • 3
    • 79959739971 scopus 로고    scopus 로고
    • Filtering of RLG's drift data based on grey-time series model
    • (in Chinese)
    • Wei Guo, Tang Jianxun, Wang Yu, et al. Filtering of RLG's drift data based on grey-time series model [J]. Infrared and Laser Engineering, 2011, 40(4): 747-751. (in Chinese)
    • (2011) Infrared and Laser Engineering , vol.40 , Issue.4 , pp. 747-751
    • Wei, G.1    Tang, J.2    Wang, Y.3
  • 4
    • 77953151361 scopus 로고    scopus 로고
    • Application of gradient radial basis in the modeling of MEMS gyro's function network random drift
    • Wang Hao, Wang Junpu, Tian Weifeng, et al. Application of gradient radial basis in the modeling of MEMS gyro's function network random drift [J]. Journal of Chinese Inertial Technology, 2006, 14(4): 44-48.
    • (2006) Journal of Chinese Inertial Technology , vol.14 , Issue.4 , pp. 44-48
    • Wang, H.1    Wang, J.2    Tian, W.3
  • 5
    • 58149147326 scopus 로고    scopus 로고
    • Random error coefficient prediction of laser gyro based on LSSVM
    • (in Chinese)
    • Hou Qingjian, Wang Gongli. Random error coefficient prediction of laser gyro based on LSSVM [J]. Infrared and Laser Engineering, 2008, 37(5): 802-805.(in Chinese)
    • (2008) Infrared and Laser Engineering , vol.37 , Issue.5 , pp. 802-805
    • Hou, Q.1    Wang, G.2
  • 7
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    • Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London: Series A, 1998, 454: 903-995.
    • (1998) Proceedings of the Royal Society of London: Series A , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 8
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machines classifiers
    • Suykens J A K, Vandewalle J. Least squares support vector machines classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 9
    • 0035392694 scopus 로고    scopus 로고
    • Financial time series prediction using least squares support vector machines within the evidence framework
    • Van Gestel T, Suykens J A K, Baestaens D K, et al. Financial time series prediction using least squares support vector machines within the evidence framework [J]. IEEE Transactions on Neural Network, 2001, 12(4): 809-821.
    • (2001) IEEE Transactions on Neural Network , vol.12 , Issue.4 , pp. 809-821
    • Van Gestel, T.1    Suykens, J.A.K.2    Baestaens, D.K.3
  • 10
    • 33847105083 scopus 로고    scopus 로고
    • Power load forecasting with least squares support vector machines and chaos theory
    • Wu Haishan, Zhang Shen. Power load forecasting with least squares support vector machines and chaos theory [C]// International Conference on Neural Networks and Brain, 2005, 1020-1024.
    • (2005) International Conference on Neural Networks and Brain , pp. 1020-1024
    • Wu, H.1    Zhang, S.2
  • 12
    • 33749246680 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • Maxplanck Institute for Biological Cybernet
    • Olivier Chapelle. Training a support vector machine in the primal [R]. Maxplanck Institute for Biological Cybernet, 2006, 4: 1-147.
    • (2006) , vol.4 , pp. 1-147
    • Chapelle, O.1
  • 13
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D J C. Bayesian interpolation[J]. Neural Computation, 1992, 4(3): 415-447.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 14
    • 0001441372 scopus 로고
    • Probable network and plausible predictions-a review of practical bayesian methods for supervised neural networks
    • Mackay D J C. Probable network and plausible predictions-a review of practical bayesian methods for supervised neural networks [J]. Network Computation in Neural Systems, 1995, 6: 469-505.
    • (1995) Network Computation in Neural Systems , vol.6 , pp. 469-505
    • Mackay, D.J.C.1
  • 15
    • 0034271876 scopus 로고    scopus 로고
    • The evidence framework applied to support vector machines
    • Kowk J T. The evidence framework applied to support vector machines [J]. IEEE Trans on Neural Network, 2000, 11(5): 1162-1173.
    • (2000) IEEE Trans on Neural Network , vol.11 , Issue.5 , pp. 1162-1173
    • Kowk, J.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.