메뉴 건너뛰기




Volumn 26, Issue 22, 2006, Pages 17-22

Parameter selection and optimization method of SVM model for short-term load forecasting

Author keywords

Gauss kernel; Generalization; Load forecasting; Parameter selection; Support vector machines

Indexed keywords

FORECASTING; MODEL STRUCTURES; NEURAL NETWORKS; OPTIMIZATION;

EID: 33846153781     PISSN: 02588013     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (62)

References (16)
  • 1
    • 20544462899 scopus 로고    scopus 로고
    • A new method for short term load forecasting based on additive fuzzy systems
    • Chinese source
    • Liu Yaonian, Zhu Bin, Zeng Lingquan, et al. A new method for short term load forecasting based on additive fuzzy systems[J]. Power System Technology, 2003, 27(8): 68-71 (in Chinese).
    • (2003) Power System Technology , vol.27 , Issue.8 , pp. 68-71
    • Liu, Y.1    Zhu, B.2    Zeng, L.3
  • 2
    • 9744229048 scopus 로고    scopus 로고
    • A deterministic annealing clustering based short-term load forecasting method with radial basis function network
    • Chinese source
    • Zhao Jianjian, Zhang Buhan, Cheng Shijie, et al. A deterministic annealing clustering based short-term load forecasting method with radial basis function network[J]. Power System Technology, 2003, 27(6): 22-25 (in Chinese).
    • (2003) Power System Technology , vol.27 , Issue.6 , pp. 22-25
    • Zhao, J.1    Zhang, B.2    Cheng, S.3
  • 3
    • 0033080240 scopus 로고    scopus 로고
    • Fuzzy modeling for short term load forecasting using the orthogonal least squares method
    • P A Mastorocostas, J B Theocharis, A G Bakirtizis. Fuzzy modeling for short term load forecasting using the orthogonal least squares method[J]. IEEE Transaction on Power Systems, 1999, 14(1): 29-36.
    • (1999) IEEE Transaction on Power Systems , vol.14 , Issue.1 , pp. 29-36
    • Mastorocostas, P.A.1    Theocharis, J.B.2    Bakirtizis, A.G.3
  • 5
    • 0034151255 scopus 로고    scopus 로고
    • A constrained orthogonal least-squares method for generating TSK fuzzy models: Application to short-term load forecasting
    • P A Mastorocostas, J B Theocharis, Vassilios S Petridis. A constrained orthogonal least-squares method for generating TSK fuzzy models: Application to short-term load forecasting[J]. Fuzzy Sets and Systems, 2001, 118 (2): 215-233.
    • (2001) Fuzzy Sets and Systems , vol.118 , Issue.2 , pp. 215-233
    • Mastorocostas, P.A.1    Theocharis, J.B.2    Petridis, V.S.3
  • 6
    • 0035950897 scopus 로고    scopus 로고
    • Novel input variable selection for ANN short-term load forecasting
    • Chinese source
    • Gao Shan, Shan Yuanda. Novel input variable selection for ANN short-term load forecasting[J]. Automation of Electric Power Systems, 2001, 25(22): 41-44 (in Chinese).
    • (2001) Automation of Electric Power Systems , vol.25 , Issue.22 , pp. 41-44
    • Gao, S.1    Shan, Y.2
  • 7
    • 1542361556 scopus 로고    scopus 로고
    • Applying rough set theory to establish artificial neural networks for short term load forecasting
    • Chinese source
    • Xie Hong, Cheng haozhong, Zhang Guoli, et al. Applying rough set theory to establish artificial neural networks for short term load forecasting[J]. Proceedings of the CSEE, 2003, 23(11): 1-4 (in Chinese).
    • (2003) Proceedings of the CSEE , vol.23 , Issue.11 , pp. 1-4
    • Xie, H.1    Cheng, H.2    Zhang, G.3
  • 8
    • 20544434482 scopus 로고    scopus 로고
    • A hybrid fuzzy modeling method and its application in short-term load forecast
    • Chinese source
    • Xie Hong, Niu Dongxiao, Zhang Guoli, et al. A hybrid fuzzy modeling method and its application in short-term load forecast[J]. Proceedings of the CSEE, 2005, 25(8): 17-22 (in Chinese).
    • (2005) Proceedings of the CSEE , vol.25 , Issue.8 , pp. 17-22
    • Xie, H.1    Niu, D.2    Zhang, G.3
  • 10
    • 0036552848 scopus 로고    scopus 로고
    • A support vector machine approach for short term load forecasting
    • Chinese source
    • Zhao Dengfu, Wang Meng, Zhang Jiangshe, et al. A support vector machine approach for short term load forecasting[J]. Proceedings of the CSEE, 2002, 22(4): 26-30 (in Chinese).
    • (2002) Proceedings of the CSEE , vol.22 , Issue.4 , pp. 26-30
    • Zhao, D.1    Wang, M.2    Zhang, J.3
  • 11
    • 0141678325 scopus 로고    scopus 로고
    • Study of support vector machines for short-term load forecasting
    • Chinese source
    • Li Yuancheng, Fang Tingjian, Yu Erkeng. Study of support vector machines for short-term load forecasting[J]. Proceedings of the CSEE, 2003, 23(6): 55-59 (in Chinese).
    • (2003) Proceedings of the CSEE , vol.23 , Issue.6 , pp. 55-59
    • Li, Y.1    Fang, T.2    Yu, E.3
  • 12
    • 6344267585 scopus 로고    scopus 로고
    • Wavelet support vector machines for short-term load forecasting
    • Chinese source
    • Li Yuancheng, Fang Tingjian, Zhen Guoxiang. Wavelet support vector machines for short-term load forecasting[J]. Journal of university of science and technology of china, 2003, 33(6): 726-732 (in Chinese).
    • (2003) Journal of University of Science and Technology of China , vol.33 , Issue.6 , pp. 726-732
    • Li, Y.1    Fang, T.2    Zhen, G.3
  • 13
    • 23744477183 scopus 로고    scopus 로고
    • Based on Bayesian theory and online learning SVM for short term load forecasting
    • Chinese source
    • Zhao Dengfu, Pang Wenchen, Zhang Jiangshe, et al. Based on Bayesian theory and online learning SVM for short term load forecasting[J]. Proceedings of the CSEE, 2005, 25(13): 8-13 (in Chinese).
    • (2005) Proceedings of the CSEE , vol.25 , Issue.13 , pp. 8-13
    • Zhao, D.1    Pang, W.2    Zhang, J.3
  • 14
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • V Cherkassky, Y Ma. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17(1): 113-126.
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 15
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • Wenjian Wang, Zongben Xua, Weizhen Lu, et al. Determination of the spread parameter in the Gaussian kernel for classification and regression[J]. Neurocomputing, 2003, 55(3): 643-663.
    • (2003) Neurocomputing , vol.55 , Issue.3 , pp. 643-663
    • Wang, W.1    Xua, Z.2    Lu, W.3
  • 16
    • 0036160859 scopus 로고    scopus 로고
    • Efficient SVM regression training with SMO
    • G W Flake, S Lawrence. Efficient SVM regression training with SMO[J]. Machine Learning, 2000, 46(1-3): 271-290.
    • (2000) Machine Learning , vol.46 , Issue.1-3 , pp. 271-290
    • Flake, G.W.1    Lawrence, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.