메뉴 건너뛰기




Volumn 8, Issue 12, 2015, Pages 14346-14360

Wind power grid connected capacity prediction using LSSVM optimized by the bat algorithm

Author keywords

Bat algorithm (BA); Granger causality test; Least squares support vector machine (LSSVM); Wind power grid connected capacity prediction

Indexed keywords

ECONOMICS; ELECTRIC LOAD DISPATCHING; PLANNING; STATISTICAL TESTS; STOCHASTIC SYSTEMS; SUPPORT VECTOR MACHINES; WEATHER FORECASTING; WIND POWER;

EID: 84952314900     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en81212428     Document Type: Article
Times cited : (17)

References (34)
  • 1
    • 77958152443 scopus 로고    scopus 로고
    • Status and prospects of chinese wind energy
    • Xu, J.; He, D.; Zhao, X. Status and prospects of chinese wind energy. Energy 2010, 35, 4439-4444.
    • (2010) Energy , vol.35 , pp. 4439-4444
    • Xu, J.1    He, D.2    Zhao, X.3
  • 2
    • 79961126223 scopus 로고    scopus 로고
    • Current methods and advances in forecasting of wind power generation
    • Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1-8.
    • (2012) Renew. Energy , vol.37 , pp. 1-8
    • Foley, A.M.1    Leahy, P.G.2    Marvuglia, A.3    McKeogh, E.J.4
  • 3
    • 84905269295 scopus 로고    scopus 로고
    • A review on wind power industry and corresponding insurance market in china: Current status and challenges
    • Jin, X.; Zhang, Z.; Shi, X.; Ju,W. A review on wind power industry and corresponding insurance market in china: Current status and challenges. Renew. Sustain. Energy Rev. 2014, 38, 1069-1082.
    • (2014) Renew. Sustain. Energy Rev. , vol.38 , pp. 1069-1082
    • Jin, X.1    Zhang, Z.2    Shi, X.3    Ju, W.4
  • 5
    • 84922447676 scopus 로고    scopus 로고
    • Reactive power and voltage control in grid-connected wind farms: An online optimization based fast model predictive control approach
    • Ahmed, H. Reactive power and voltage control in grid-connected wind farms: An online optimization based fast model predictive control approach. Electr. Eng. 2015, 97, 35-44.
    • (2015) Electr. Eng. , vol.97 , pp. 35-44
    • Ahmed, H.1
  • 6
    • 33846310789 scopus 로고    scopus 로고
    • Time series analysis of wind speed using var and the generalized impulse response technique
    • Ewing, B.T.; Kruse, J.B.; Schroeder, J.L.; Smith, D.A. Time series analysis of wind speed using var and the generalized impulse response technique. J. Wind Eng. Ind. Aerodyn. 2007, 95, 209-219.
    • (2007) J. Wind Eng. Ind. Aerodyn. , vol.95 , pp. 209-219
    • Ewing, B.T.1    Kruse, J.B.2    Schroeder, J.L.3    Smith, D.A.4
  • 7
    • 84952319867 scopus 로고    scopus 로고
    • A vector auto-regressive model for onshore and offshore wind synthesis incorporating meteorological model information
    • Hill, D.; Bell, K.R.W.; McMillan, D.; Infield, D. A vector auto-regressive model for onshore and offshore wind synthesis incorporating meteorological model information. Adv. Sci. Res. 2014, 11, 35-39.
    • (2014) Adv. Sci. Res. , vol.11 , pp. 35-39
    • Hill, D.1    Bell, K.R.W.2    McMillan, D.3    Infield, D.4
  • 8
    • 20444437286 scopus 로고    scopus 로고
    • Forecast of hourly average wind speed with arma models in Navarre (Spain)
    • Torres, J.L.; García, A.; de Blas, M.; de Francisco, A. Forecast of hourly average wind speed with arma models in Navarre (Spain). Sol. Energy 2005, 79, 65-77.
    • (2005) Sol. Energy , vol.79 , pp. 65-77
    • Torres, J.L.1    García, A.2    de Blas, M.3    de Francisco, A.4
  • 9
    • 78650562310 scopus 로고    scopus 로고
    • Arma based approaches for forecasting the tuple of wind speed and direction
    • Erdem, E.; Shi, J. Arma based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 2011, 88, 1405-1414.
    • (2011) Appl. Energy , vol.88 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 10
    • 78149358777 scopus 로고    scopus 로고
    • Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed
    • Liu, H.; Erdem, E.; Shi, J. Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed. Appl. Energy 2011, 88, 724-732.
    • (2011) Appl. Energy , vol.88 , pp. 724-732
    • Liu, H.1    Erdem, E.2    Shi, J.3
  • 11
    • 84864463270 scopus 로고    scopus 로고
    • Wind speed forecasting using autoregressive moving average/generalized autoregressive conditional heteroscedasticity model
    • Jiang, W.; Yan, Z.; Feng, D.-H.; Hu, Z. Wind speed forecasting using autoregressive moving average/generalized autoregressive conditional heteroscedasticity model. Eur. Trans. Electr. Power 2012, 22, 662-673.
    • (2012) Eur. Trans. Electr. Power , vol.22 , pp. 662-673
    • Jiang, W.1    Yan, Z.2    Feng, D.-H.3    Hu, Z.4
  • 12
    • 84922324493 scopus 로고    scopus 로고
    • Wind direction forecasting with artificial neural networks and support vector machines
    • Tagliaferri, F.; Viola, I.M.; Flay, R.G.J.Wind direction forecasting with artificial neural networks and support vector machines. Ocean Eng. 2015, 97, 65-73.
    • (2015) Ocean Eng. , vol.97 , pp. 65-73
    • Tagliaferri, F.1    Viola, I.M.2    Flay, R.G.J.3
  • 13
    • 84944035381 scopus 로고    scopus 로고
    • Multistage wind-filectric power forecast by using a combination of advanced statistical methods
    • Buhan, S.; Cadirci, I. Multistage wind-filectric power forecast by using a combination of advanced statistical methods. IEEE Trans. Ind. Inform. 2015, 11, 1231-1242.
    • (2015) IEEE Trans. Ind. Inform. , vol.11 , pp. 1231-1242
    • Buhan, S.1    Cadirci, I.2
  • 14
    • 84916917658 scopus 로고    scopus 로고
    • Daily wind speed forecasting through hybrid kf-ann model based on arima
    • Shukur, O.B.; Lee, M.H. Daily wind speed forecasting through hybrid kf-ann model based on arima. Renew. Energy 2015, 76, 637-647.
    • (2015) Renew. Energy , vol.76 , pp. 637-647
    • Shukur, O.B.1    Lee, M.H.2
  • 15
    • 84997706201 scopus 로고    scopus 로고
    • Artificial neural networks applications in wind energy systems: A review
    • Ata, R. Artificial neural networks applications in wind energy systems: A review. Renew. Sustain. Energy Rev. 2015, 49, 534-562.
    • (2015) Renew. Sustain. Energy Rev. , vol.49 , pp. 534-562
    • Ata, R.1
  • 17
    • 84949115984 scopus 로고    scopus 로고
    • Wind power prediction considering nonlinear atmospheric disturbances
    • Zhang, Y.; Yang, J.; Wang, K.; Wang, Z. Wind power prediction considering nonlinear atmospheric disturbances. Energies 2015, 8, 475-489.
    • (2015) Energies , vol.8 , pp. 475-489
    • Zhang, Y.1    Yang, J.2    Wang, K.3    Wang, Z.4
  • 18
    • 79952183962 scopus 로고    scopus 로고
    • A corrected hybrid approach for wind speed prediction in Hexi Corridor of China
    • Guo, Z.H.; Zhao, J.; Zhang,W.Y.;Wang, J.Z. A corrected hybrid approach for wind speed prediction in Hexi Corridor of China. Energy 2011, 36, 1668-1679.
    • (2011) Energy , vol.36 , pp. 1668-1679
    • Guo, Z.H.1    Zhao, J.2    Zhang, W.Y.3    Wang, J.Z.4
  • 19
    • 84906911087 scopus 로고    scopus 로고
    • Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN)
    • De Giorgi, M.; Campilongo, S.; Ficarella, A.; Congedo, P. Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 2014, 7, 5251-5272.
    • (2014) Energies , vol.7 , pp. 5251-5272
    • De Giorgi, M.1    Campilongo, S.2    Ficarella, A.3    Congedo, P.4
  • 20
    • 84931262272 scopus 로고    scopus 로고
    • Short-term wind power prediction based on LSSVM-GSA model
    • Yuan, X.; Chen, C.; Yuan, Y.; Huang, Y.; Tan, Q. Short-term wind power prediction based on LSSVM-GSA model. Energy Convers. Manag. 2015, 101, 393-401.
    • (2015) Energy Convers. Manag. , vol.101 , pp. 393-401
    • Yuan, X.1    Chen, C.2    Yuan, Y.3    Huang, Y.4    Tan, Q.5
  • 23
    • 84858724450 scopus 로고    scopus 로고
    • The short-term wind speed forecast analysis based on the PSO-LSSVM predict model
    • Sun, B.; Yao, H.T. The short-term wind speed forecast analysis based on the PSO-LSSVM predict model. Power Syst. Prot. Control 2012, 40, 85-89.
    • (2012) Power Syst. Prot. Control , vol.40 , pp. 85-89
    • Sun, B.1    Yao, H.T.2
  • 24
    • 84922362244 scopus 로고    scopus 로고
    • The study and application of a novel hybrid forecasting model-A case study of wind speed forecasting in china
    • Wang, J.Z.;Wang, Y.; Jiang, P. The study and application of a novel hybrid forecasting model-A case study of wind speed forecasting in china. Appl. Energy 2015, 143, 472-488.
    • (2015) Appl. Energy , vol.143 , pp. 472-488
    • Wang J.Z.1    Wang, Y.2    Jiang, P.3
  • 25
    • 78649854793 scopus 로고    scopus 로고
    • Prediction model based on least squares support vector machine with harmony search and its application
    • Song, Z.; Li, J. Prediction model based on least squares support vector machine with harmony search and its application. J. Harbin Inst. Technol. 2009, 41, 208-210.
    • (2009) J. Harbin Inst. Technol. , vol.41 , pp. 208-210
    • Song, Z.1    Li, J.2
  • 26
    • 77951675054 scopus 로고    scopus 로고
    • A new metaheuristic bat-inspired algorithm
    • Yang, X.-S. A new metaheuristic bat-inspired algorithm. Nat. Inspir. Coop. Strateg. Optim. 2010, 284, 65-74.
    • (2010) Nat. Inspir. Coop. Strateg. Optim. , vol.284 , pp. 65-74
    • Yang, X.-S.1
  • 27
    • 84922730958 scopus 로고    scopus 로고
    • A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of dax stock price
    • Hafezi, R.; Shahrabi, J.; Hadavandi, E. A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of dax stock price. Appl. Soft Comput. 2015, 29, 196-210.
    • (2015) Appl. Soft Comput. , vol.29 , pp. 196-210
    • Hafezi, R.1    Shahrabi, J.2    Hadavandi, E.3
  • 28
    • 84937765412 scopus 로고    scopus 로고
    • A novel bat algorithm with habitat selection and doppler effect in echoes for optimization
    • Meng, X.B.; Gao, X.Z.; Liu, Y.; Zhang, H.Z. A novel bat algorithm with habitat selection and doppler effect in echoes for optimization. Expert Syst. Appl. 2015, 42, 6350-6364.
    • (2015) Expert Syst. Appl. , vol.42 , pp. 6350-6364
    • Meng, X.B.1    Gao, X.Z.2    Liu, Y.3    Zhang, H.Z.4
  • 29
    • 85000788457 scopus 로고    scopus 로고
    • A unified approach to detect the record duplication using bat algorithm and fuzzy classifier for health informatics
    • Senthilkumar, P.; Vanitha, N.S. A unified approach to detect the record duplication using bat algorithm and fuzzy classifier for health informatics. J. Med. Imaging Health Inform. 2015, 5, 1121-1132.
    • (2015) J. Med. Imaging Health Inform. , vol.5 , pp. 1121-1132
    • Senthilkumar, P.1    Vanitha, N.S.2
  • 30
    • 84920278555 scopus 로고    scopus 로고
    • Optimal power flow by bat search algorithm for generation reallocation with unified power flow controller
    • Rao, B.V.; Nagesh Kumar, G.V. Optimal power flow by bat search algorithm for generation reallocation with unified power flow controller. Int. J. Electr. Power Energy Syst. 2015, 68, 81-88.
    • (2015) Int. J. Electr. Power Energy Syst. , vol.68 , pp. 81-88
    • Rao, B.V.1    Nagesh Kumar, G.V.2
  • 31
    • 84937439264 scopus 로고    scopus 로고
    • Optimal design of passive power filters based on multi-objective bat algorithm and pareto front
    • Yang, N.C.; Le, M.D. Optimal design of passive power filters based on multi-objective bat algorithm and pareto front. Appl. Soft Comput. 2015, 35, 257-266.
    • (2015) Appl. Soft Comput. , vol.35 , pp. 257-266
    • Yang, N.C.1    Le, M.D.2
  • 32
    • 84866874711 scopus 로고    scopus 로고
    • Electricity consumption and economic growth in Portugal: Evidence from a multivariate framework analysis
    • Tang, C.F.; Tan, E.C. Electricity consumption and economic growth in Portugal: Evidence from a multivariate framework analysis. Energy J. 2012, 33, 23-48.
    • (2012) Energy J. , vol.33 , pp. 23-48
    • Tang, C.F.1    Tan, E.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.