-
1
-
-
20344362627
-
Usefulness of magnetic resonance volumetric evaluation in predicting response to preoperative concurrent chemoradiotherapy in patients with resectable rectal cancer
-
Young, H. K. et al. Usefulness of magnetic resonance volumetric evaluation in predicting response to preoperative concurrent chemoradiotherapy in patients with resectable rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 62, 761-768 (2005).
-
(2005)
Int. J. Radiat. Oncol. Biol. Phys.
, vol.62
, pp. 761-768
-
-
Young, H.K.1
-
2
-
-
84937921313
-
MRI volumetry for prediction of tumour response to neoadjuvant chemotherapy followed by chemoradiotherapy in locally advanced rectal cancer
-
Seierstad, T. et al. MRI volumetry for prediction of tumour response to neoadjuvant chemotherapy followed by chemoradiotherapy in locally advanced rectal cancer. Br. J. Radiol. 88, 20150097 (2015).
-
(2015)
Br. J. Radiol.
, vol.88
, pp. 20150097
-
-
Seierstad, T.1
-
3
-
-
84946748204
-
Prospective, multicenter validation study of magnetic resonance volumetry for response assessment after preoperative chemoradiation in rectal cancer: Can the results in the literature be reproduced?
-
Martens, M. H. et al. Prospective, multicenter validation study of magnetic resonance volumetry for response assessment after preoperative chemoradiation in rectal cancer: Can the results in the literature be reproduced? Int. J. Radiat. Oncol. Biol. Phys. 93, 1005-1014 (2015).
-
(2015)
Int. J. Radiat. Oncol. Biol. Phys.
, vol.93
, pp. 1005-1014
-
-
Martens, M.H.1
-
4
-
-
84946801359
-
MRI and Diffusion-weighted MRI Volumetry for Identification of Complete Tumor Responders after Preoperative Chemoradiotherapy in Patients with Rectal Cancer: A Bi-institutional Validation Study
-
Lambregts, D. M. J. et al. MRI and Diffusion-weighted MRI Volumetry for Identification of Complete Tumor Responders After Preoperative Chemoradiotherapy in Patients With Rectal Cancer: A Bi-institutional Validation Study. Ann. Surg. 262, 1034-9 (2015).
-
(2015)
Ann. Surg.
, vol.262
, pp. 1034-1039
-
-
Lambregts, D.M.J.1
-
5
-
-
84867886963
-
Assessment of response to chemoradiation therapy in rectal cancer using MR volumetry based on diffusion-weighted data sets: A preliminary report
-
Carbone, S. F. et al. Assessment of response to chemoradiation therapy in rectal cancer using MR volumetry based on diffusion-weighted data sets: a preliminary report. Radiol. Med. 117, 1112-24 (2012).
-
(2012)
Radiol. Med.
, vol.117
, pp. 1112-1124
-
-
Carbone, S.F.1
-
6
-
-
84890547137
-
Locally advanced rectal cancer: Diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy
-
Ha, H. II., Kim, A. Y., Yu, C. S., Park, S. H. & Ha, H. K. Locally advanced rectal cancer: Diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy. Eur. Radiol. 23, 3345-3353 (2013).
-
(2013)
Eur. Radiol.
, vol.23
, pp. 3345-3353
-
-
Ha, H.I.1
Kim, A.Y.2
Yu, C.S.3
Park, S.H.4
Ha, H.K.5
-
7
-
-
84860390159
-
Rectal Cancer: Assessment of Complete Response to Preoperative Combined Radiation Therapy with Chemotherapy-Conventional MR Volumetry versus Diffusion-weighted MR Imaging
-
Curvo-Semedo, L. et al. Rectal Cancer: Assessment of Complete Response to Preoperative Combined Radiation Therapy with Chemotherapy-Conventional MR Volumetry versus Diffusion-weighted MR Imaging. Radiology 260, 734-743 (2011).
-
(2011)
Radiology
, vol.260
, pp. 734-743
-
-
Curvo-Semedo, L.1
-
8
-
-
0035205433
-
Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer
-
George, M. L. et al. Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br. J. Surg. 88, 1628-1636 (2001).
-
(2001)
Br. J. Surg.
, vol.88
, pp. 1628-1636
-
-
George, M.L.1
-
9
-
-
84977615403
-
Diffusion-weighted imaging: Apparent diffusion coefficient histogram analysis for detecting pathologic complete response to chemoradiotherapy in locally advanced rectal cancer
-
Choi, M. H. et al. Diffusion-weighted imaging: Apparent diffusion coefficient histogram analysis for detecting pathologic complete response to chemoradiotherapy in locally advanced rectal cancer. J. Magn. Reson. Imaging 44, 212-20 (2016).
-
(2016)
J. Magn. Reson. Imaging
, vol.44
, pp. 212-220
-
-
Choi, M.H.1
-
10
-
-
83355166959
-
Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer
-
Maas, M. et al. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J. Clin. Oncol. 29, 4633-4640 (2011).
-
(2011)
J. Clin. Oncol.
, vol.29
, pp. 4633-4640
-
-
Maas, M.1
-
12
-
-
84979868500
-
Intravoxel Incoherent Motion-derived Histogram Metrics for Assessment of Response after Combined Chemotherapy and Radiation Therapy in Rectal Cancer: Initial Experience and Comparison between Single-Section and Volumetric Analyses
-
Nougaret, S. et al. Intravoxel Incoherent Motion-derived Histogram Metrics for Assessment of Response after Combined Chemotherapy and Radiation Therapy in Rectal Cancer: Initial Experience and Comparison between Single-Section and Volumetric Analyses. Radiology 280, 446-454 (2016).
-
(2016)
Radiology
, vol.280
, pp. 446-454
-
-
Nougaret, S.1
-
13
-
-
84959475312
-
Automated and semiautomated segmentation of rectal tumor volumes on diffusion-weighted MRI: Can it replace manual volumetry?
-
Van Heeswijk, M. M. et al. Automated and semiautomated segmentation of rectal tumor volumes on diffusion-weighted MRI: Can it replace manual volumetry? Int. J. Radiat. Oncol. Biol. Phys. 94, 824-831 (2016).
-
(2016)
Int. J. Radiat. Oncol. Biol. Phys.
, vol.94
, pp. 824-831
-
-
Van Heeswijk, M.M.1
-
14
-
-
84901946941
-
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
-
Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5 (2014).
-
(2014)
Nat. Commun.
, vol.5
-
-
Aerts, H.J.W.L.1
-
15
-
-
84992349608
-
The Potential of Radiomic-Based Phenotyping in Precision Medicine
-
Aerts, H. J. W. L. et al. The Potential of Radiomic-Based Phenotyping in Precision Medicine. JAMA Oncol. 2, 1636 (2016).
-
(2016)
JAMA Oncol.
, vol.2
, pp. 1636
-
-
Aerts, H.J.W.L.1
-
16
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015).
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
17
-
-
84968661778
-
Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique
-
Greenspan, H., Ginneken, B. van & Summers, R. M. Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Trans. Med. Imaging 35, 1153-1159 (2016).
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1153-1159
-
-
Greenspan, H.1
Ginneken, B.2
Summers, R.M.3
-
18
-
-
85032586119
-
Deep learning in bioinformatics
-
Min, S., Lee, B. & Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. bbw068, doi: 10.1093/bib/bbw068 (2016).
-
(2016)
Brief. Bioinform.
, pp. bbw068
-
-
Min, S.1
Lee, B.2
Yoon, S.3
-
19
-
-
85023782652
-
-
Carneiro, G. et al. Deep Learning and Data Labeling for Medical Applications: First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings. in 280 (2016).
-
(2016)
Deep Learning and Data Labeling for Medical Applications: First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings.
, pp. 280
-
-
Carneiro, G.1
-
20
-
-
84963691856
-
Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation
-
Irving, B. et al. Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation. Med. Image Anal., doi: 10.1016/j.media.2016.03.002 (2016).
-
(2016)
Med. Image Anal.
-
-
Irving, B.1
-
21
-
-
70349661886
-
A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients
-
Day, E. et al. A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Med. Phys. 36, 4349-4358 (2009).
-
(2009)
Med. Phys.
, vol.36
, pp. 4349-4358
-
-
Day, E.1
-
22
-
-
85023753475
-
-
Central Committee on Research Involving Human Subjects. Non-WMO Research Accessed: 21st March 2017
-
Central Committee on Research Involving Human Subjects. Non-WMO Research. Available at: http://www.ccmo.nl/en/non-wmo-research. (Accessed: 21st March 2017).
-
-
-
-
23
-
-
73849116467
-
Elastix: A toolbox for intensity-based medical image registration
-
Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. P. W. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196-205 (2010).
-
(2010)
IEEE Trans. Med. Imaging
, vol.29
, pp. 196-205
-
-
Klein, S.1
Staring, M.2
Murphy, K.3
Viergever, M.A.4
Pluim, J.P.W.5
-
24
-
-
84892620757
-
Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease
-
Shamonin, D. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease. Front. Neuroinform. 7, 1-15 (2013).
-
(2013)
Front. Neuroinform.
, vol.7
, pp. 1-15
-
-
Shamonin, D.1
-
25
-
-
58149514015
-
Adaptive Stochastic Gradient Descent Optimisation for Image Registration
-
Klein, S., Pluim, J. P. W., Staring, M. & Viergever, M. A. Adaptive Stochastic Gradient Descent Optimisation for Image Registration. Int. J. Comput. Vis. 81, 227-239 (2009).
-
(2009)
Int. J. Comput. Vis.
, vol.81
, pp. 227-239
-
-
Klein, S.1
Pluim, J.P.W.2
Staring, M.3
Viergever, M.A.4
-
26
-
-
0037255821
-
PET-CT image registration in the chest using free-form deformations
-
Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T. K. & Eubank, W. PET-CT image registration in the chest using free-form deformations. IEEE Trans. Med. Imaging 22, 120-128 (2003).
-
(2003)
IEEE Trans. Med. Imaging
, vol.22
, pp. 120-128
-
-
Mattes, D.1
Haynor, D.R.2
Vesselle, H.3
Lewellen, T.K.4
Eubank, W.5
-
27
-
-
85023768077
-
-
Insight Journal (ISSN 2327-770X)-Itk:Transforms supporting spatial derivatives Accessed: 14th February 2017
-
Insight Journal (ISSN 2327-770X)-Itk:Transforms supporting spatial derivatives. Available at: http://www.insight-journal.org/browse/publication/756 (Accessed: 14th February 2017).
-
-
-
-
29
-
-
84904163933
-
Dropout: Prevent NN from overfitting
-
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: prevent NN from overfitting. J. Mach. Learn. Res. 15, 1929-1958 (2014).
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
35
-
-
84951834022
-
U-Net: Convolutional Networks for Biomedical Image Segmentation
-
Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. International Conference on Medical image computing and computer-assisted intervention 9351, 234-241 (2015).
-
(2015)
International Conference on Medical Image Computing and Computer-assisted Intervention
, vol.9351
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
36
-
-
84996483314
-
3D U-net: Learning dense volumetric segmentation from sparse annotation
-
Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-net: Learning dense volumetric segmentation from sparse annotation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 9901 LNCS, 424-432 (2016).
-
(2016)
Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 9901 LNCS
, pp. 424-432
-
-
Cicek, Ö.1
Abdulkadir, A.2
Lienkamp, S.S.3
Brox, T.4
Ronneberger, O.5
-
37
-
-
85023774788
-
-
Menze, B. H., Reyes, M., Farahani, K. & Kelpathy-Cramer, J. Multimodal Brain Tumor Segmentation Challenge 2014. (2014).
-
(2014)
Multimodal Brain Tumor Segmentation Challenge 2014.
-
-
Menze, B.H.1
Reyes, M.2
Farahani, K.3
Kelpathy-Cramer, J.4
-
39
-
-
85023757658
-
Brain Tumor Segmentation with Deep Learning. in Multimodal Brain Tumor Image Segmentation (BRATS) Challenge
-
Rao, V., Sarabi, M. S. & Jaiswal, A. Brain Tumor Segmentation with Deep Learning. in Multimodal Brain Tumor Image Segmentation (BRATS) Challenge, MICCAI 56 (2015).
-
(2015)
MICCAI
, vol.56
-
-
Rao, V.1
Sarabi, M.S.2
Jaiswal, A.3
|