메뉴 건너뛰기




Volumn 7, Issue 1, 2017, Pages

Erratum: Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR (Scientific Reports (2017) DOI: 10.1038/s41598-017-05728-9);Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR

Author keywords

[No Author keywords available]

Indexed keywords

AGED; ARTIFICIAL NEURAL NETWORK; AUTOMATION; DIAGNOSTIC IMAGING; FEMALE; HUMAN; IMAGE PROCESSING; MACHINE LEARNING; MALE; MIDDLE AGED; NUCLEAR MAGNETIC RESONANCE IMAGING; PROCEDURES; RECTUM TUMOR;

EID: 85023757909     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-018-20029-5     Document Type: Erratum
Times cited : (234)

References (39)
  • 1
    • 20344362627 scopus 로고    scopus 로고
    • Usefulness of magnetic resonance volumetric evaluation in predicting response to preoperative concurrent chemoradiotherapy in patients with resectable rectal cancer
    • Young, H. K. et al. Usefulness of magnetic resonance volumetric evaluation in predicting response to preoperative concurrent chemoradiotherapy in patients with resectable rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 62, 761-768 (2005).
    • (2005) Int. J. Radiat. Oncol. Biol. Phys. , vol.62 , pp. 761-768
    • Young, H.K.1
  • 2
    • 84937921313 scopus 로고    scopus 로고
    • MRI volumetry for prediction of tumour response to neoadjuvant chemotherapy followed by chemoradiotherapy in locally advanced rectal cancer
    • Seierstad, T. et al. MRI volumetry for prediction of tumour response to neoadjuvant chemotherapy followed by chemoradiotherapy in locally advanced rectal cancer. Br. J. Radiol. 88, 20150097 (2015).
    • (2015) Br. J. Radiol. , vol.88 , pp. 20150097
    • Seierstad, T.1
  • 3
    • 84946748204 scopus 로고    scopus 로고
    • Prospective, multicenter validation study of magnetic resonance volumetry for response assessment after preoperative chemoradiation in rectal cancer: Can the results in the literature be reproduced?
    • Martens, M. H. et al. Prospective, multicenter validation study of magnetic resonance volumetry for response assessment after preoperative chemoradiation in rectal cancer: Can the results in the literature be reproduced? Int. J. Radiat. Oncol. Biol. Phys. 93, 1005-1014 (2015).
    • (2015) Int. J. Radiat. Oncol. Biol. Phys. , vol.93 , pp. 1005-1014
    • Martens, M.H.1
  • 4
    • 84946801359 scopus 로고    scopus 로고
    • MRI and Diffusion-weighted MRI Volumetry for Identification of Complete Tumor Responders after Preoperative Chemoradiotherapy in Patients with Rectal Cancer: A Bi-institutional Validation Study
    • Lambregts, D. M. J. et al. MRI and Diffusion-weighted MRI Volumetry for Identification of Complete Tumor Responders After Preoperative Chemoradiotherapy in Patients With Rectal Cancer: A Bi-institutional Validation Study. Ann. Surg. 262, 1034-9 (2015).
    • (2015) Ann. Surg. , vol.262 , pp. 1034-1039
    • Lambregts, D.M.J.1
  • 5
    • 84867886963 scopus 로고    scopus 로고
    • Assessment of response to chemoradiation therapy in rectal cancer using MR volumetry based on diffusion-weighted data sets: A preliminary report
    • Carbone, S. F. et al. Assessment of response to chemoradiation therapy in rectal cancer using MR volumetry based on diffusion-weighted data sets: a preliminary report. Radiol. Med. 117, 1112-24 (2012).
    • (2012) Radiol. Med. , vol.117 , pp. 1112-1124
    • Carbone, S.F.1
  • 6
    • 84890547137 scopus 로고    scopus 로고
    • Locally advanced rectal cancer: Diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy
    • Ha, H. II., Kim, A. Y., Yu, C. S., Park, S. H. & Ha, H. K. Locally advanced rectal cancer: Diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy. Eur. Radiol. 23, 3345-3353 (2013).
    • (2013) Eur. Radiol. , vol.23 , pp. 3345-3353
    • Ha, H.I.1    Kim, A.Y.2    Yu, C.S.3    Park, S.H.4    Ha, H.K.5
  • 7
    • 84860390159 scopus 로고    scopus 로고
    • Rectal Cancer: Assessment of Complete Response to Preoperative Combined Radiation Therapy with Chemotherapy-Conventional MR Volumetry versus Diffusion-weighted MR Imaging
    • Curvo-Semedo, L. et al. Rectal Cancer: Assessment of Complete Response to Preoperative Combined Radiation Therapy with Chemotherapy-Conventional MR Volumetry versus Diffusion-weighted MR Imaging. Radiology 260, 734-743 (2011).
    • (2011) Radiology , vol.260 , pp. 734-743
    • Curvo-Semedo, L.1
  • 8
    • 0035205433 scopus 로고    scopus 로고
    • Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer
    • George, M. L. et al. Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br. J. Surg. 88, 1628-1636 (2001).
    • (2001) Br. J. Surg. , vol.88 , pp. 1628-1636
    • George, M.L.1
  • 9
    • 84977615403 scopus 로고    scopus 로고
    • Diffusion-weighted imaging: Apparent diffusion coefficient histogram analysis for detecting pathologic complete response to chemoradiotherapy in locally advanced rectal cancer
    • Choi, M. H. et al. Diffusion-weighted imaging: Apparent diffusion coefficient histogram analysis for detecting pathologic complete response to chemoradiotherapy in locally advanced rectal cancer. J. Magn. Reson. Imaging 44, 212-20 (2016).
    • (2016) J. Magn. Reson. Imaging , vol.44 , pp. 212-220
    • Choi, M.H.1
  • 10
    • 83355166959 scopus 로고    scopus 로고
    • Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer
    • Maas, M. et al. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J. Clin. Oncol. 29, 4633-4640 (2011).
    • (2011) J. Clin. Oncol. , vol.29 , pp. 4633-4640
    • Maas, M.1
  • 12
    • 84979868500 scopus 로고    scopus 로고
    • Intravoxel Incoherent Motion-derived Histogram Metrics for Assessment of Response after Combined Chemotherapy and Radiation Therapy in Rectal Cancer: Initial Experience and Comparison between Single-Section and Volumetric Analyses
    • Nougaret, S. et al. Intravoxel Incoherent Motion-derived Histogram Metrics for Assessment of Response after Combined Chemotherapy and Radiation Therapy in Rectal Cancer: Initial Experience and Comparison between Single-Section and Volumetric Analyses. Radiology 280, 446-454 (2016).
    • (2016) Radiology , vol.280 , pp. 446-454
    • Nougaret, S.1
  • 13
    • 84959475312 scopus 로고    scopus 로고
    • Automated and semiautomated segmentation of rectal tumor volumes on diffusion-weighted MRI: Can it replace manual volumetry?
    • Van Heeswijk, M. M. et al. Automated and semiautomated segmentation of rectal tumor volumes on diffusion-weighted MRI: Can it replace manual volumetry? Int. J. Radiat. Oncol. Biol. Phys. 94, 824-831 (2016).
    • (2016) Int. J. Radiat. Oncol. Biol. Phys. , vol.94 , pp. 824-831
    • Van Heeswijk, M.M.1
  • 14
    • 84901946941 scopus 로고    scopus 로고
    • Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    • Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5 (2014).
    • (2014) Nat. Commun. , vol.5
    • Aerts, H.J.W.L.1
  • 15
    • 84992349608 scopus 로고    scopus 로고
    • The Potential of Radiomic-Based Phenotyping in Precision Medicine
    • Aerts, H. J. W. L. et al. The Potential of Radiomic-Based Phenotyping in Precision Medicine. JAMA Oncol. 2, 1636 (2016).
    • (2016) JAMA Oncol. , vol.2 , pp. 1636
    • Aerts, H.J.W.L.1
  • 17
    • 84968661778 scopus 로고    scopus 로고
    • Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique
    • Greenspan, H., Ginneken, B. van & Summers, R. M. Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Trans. Med. Imaging 35, 1153-1159 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1153-1159
    • Greenspan, H.1    Ginneken, B.2    Summers, R.M.3
  • 18
    • 85032586119 scopus 로고    scopus 로고
    • Deep learning in bioinformatics
    • Min, S., Lee, B. & Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. bbw068, doi: 10.1093/bib/bbw068 (2016).
    • (2016) Brief. Bioinform. , pp. bbw068
    • Min, S.1    Lee, B.2    Yoon, S.3
  • 20
    • 84963691856 scopus 로고    scopus 로고
    • Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation
    • Irving, B. et al. Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation. Med. Image Anal., doi: 10.1016/j.media.2016.03.002 (2016).
    • (2016) Med. Image Anal.
    • Irving, B.1
  • 21
    • 70349661886 scopus 로고    scopus 로고
    • A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients
    • Day, E. et al. A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Med. Phys. 36, 4349-4358 (2009).
    • (2009) Med. Phys. , vol.36 , pp. 4349-4358
    • Day, E.1
  • 22
    • 85023753475 scopus 로고    scopus 로고
    • Central Committee on Research Involving Human Subjects. Non-WMO Research Accessed: 21st March 2017
    • Central Committee on Research Involving Human Subjects. Non-WMO Research. Available at: http://www.ccmo.nl/en/non-wmo-research. (Accessed: 21st March 2017).
  • 24
    • 84892620757 scopus 로고    scopus 로고
    • Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease
    • Shamonin, D. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease. Front. Neuroinform. 7, 1-15 (2013).
    • (2013) Front. Neuroinform. , vol.7 , pp. 1-15
    • Shamonin, D.1
  • 25
    • 58149514015 scopus 로고    scopus 로고
    • Adaptive Stochastic Gradient Descent Optimisation for Image Registration
    • Klein, S., Pluim, J. P. W., Staring, M. & Viergever, M. A. Adaptive Stochastic Gradient Descent Optimisation for Image Registration. Int. J. Comput. Vis. 81, 227-239 (2009).
    • (2009) Int. J. Comput. Vis. , vol.81 , pp. 227-239
    • Klein, S.1    Pluim, J.P.W.2    Staring, M.3    Viergever, M.A.4
  • 27
    • 85023768077 scopus 로고    scopus 로고
    • Insight Journal (ISSN 2327-770X)-Itk:Transforms supporting spatial derivatives Accessed: 14th February 2017
    • Insight Journal (ISSN 2327-770X)-Itk:Transforms supporting spatial derivatives. Available at: http://www.insight-journal.org/browse/publication/756 (Accessed: 14th February 2017).
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet Classification with Deep Convolutional Neural Networks
    • Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 1-9, doi: 10.1016/j.protcy.2014.09.007 (2012).
    • (2012) Adv. Neural Inf. Process. Syst. , pp. 1-9
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 39
    • 85023757658 scopus 로고    scopus 로고
    • Brain Tumor Segmentation with Deep Learning. in Multimodal Brain Tumor Image Segmentation (BRATS) Challenge
    • Rao, V., Sarabi, M. S. & Jaiswal, A. Brain Tumor Segmentation with Deep Learning. in Multimodal Brain Tumor Image Segmentation (BRATS) Challenge, MICCAI 56 (2015).
    • (2015) MICCAI , vol.56
    • Rao, V.1    Sarabi, M.S.2    Jaiswal, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.