-
1
-
-
84937975641
-
Rolling element bearing diagnostics using the case western reserve university data: A benchmark study
-
W. A. Smith andR. B. Randall, "Rolling element bearing diagnostics using the case western reserve university data: A benchmark study, " Mech. Syst. Signal Process., vol. 64, pp. 100-131, 2015.
-
(2015)
Mech. Syst. Signal Process.
, vol.64
, pp. 100-131
-
-
Smith, W.A.1
Randall, R.B.2
-
2
-
-
84925964775
-
A summary of fault modelling and predictive health monitoring of rolling element bearings
-
E.-T. Idriss and J. Erkki, "A summary of fault modelling and predictive health monitoring of rolling element bearings, " Mech. Syst. Signal Process., vol. 6061, pp. 252-272, 2015.
-
(2015)
Mech. Syst. Signal Process.
, vol.6061
, pp. 252-272
-
-
Idriss, E.-T.1
Erkki, J.2
-
3
-
-
0031674597
-
Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition
-
R. Heng and M. Nor, "Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition, " Appl. Acoust., vol. 53, no. 1-3, pp. 211-226, 1998.
-
(1998)
Appl. Acoust.
, vol.53
, Issue.1-3
, pp. 211-226
-
-
Heng, R.1
Nor, M.2
-
4
-
-
33947096388
-
Model-based fault diagnosis in electric drives using machine learning
-
Jun.
-
Y. L. Murphey, M. A. Masrur, Z. Chen, B. Zhang, "Model-based fault diagnosis in electric drives using machine learning, " IEEE/ASME Trans. Mechatronics, vol. 11, no. 3, pp. 290-303, Jun. 2006.
-
(2006)
IEEE/ASME Trans. Mechatronics
, vol.11
, Issue.3
, pp. 290-303
-
-
Murphey, Y.L.1
Masrur, M.A.2
Chen, Z.3
Zhang, B.4
-
5
-
-
84942456323
-
Thermal image based fault diagnosis for rotating machinery
-
O. Janssens, et al., "Thermal image based fault diagnosis for rotating machinery, " Infrared Phys. Technol., vol. 73, pp. 78-87, 2015.
-
(2015)
Infrared Phys. Technol.
, vol.73
, pp. 78-87
-
-
Janssens, O.1
-
6
-
-
85042464650
-
-
Ph. D. dissertation, Dept. Mech. Eng., University of Ottawa, Ottawa, ON, Canada
-
W. Moussa, "Thermography-assisted bearing condition monitoring, " Ph. D. dissertation, Dept. Mech. Eng., University of Ottawa, Ottawa, ON, Canada, 2014.
-
(2014)
Thermography-assisted Bearing Condition Monitoring
-
-
Moussa, W.1
-
7
-
-
84870201977
-
Confirmation of thermal images and vibration signals for intelligent machine fault diagnostics
-
A. Widodo, D. Satrijo, T. Prahasto, G.-M. Lim, B.-K. Choi, "Confirmation of thermal images and vibration signals for intelligent machine fault diagnostics, " Int. J. Rotating Mach., vol. 2012, pp. 1-10, 2012.
-
(2012)
Int. J. Rotating Mach.
, vol.2012
, pp. 1-10
-
-
Widodo, A.1
Satrijo, D.2
Prahasto, T.3
Lim, G.-M.4
Choi, B.-K.5
-
8
-
-
84878337747
-
Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis
-
Jul.
-
V. T. Tran, B.-S. Yang, F. Gu, A. Ball, "Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis, " Mech. Syst. Signal Process., vol. 38, no. 2, pp. 601-614, Jul. 2013.
-
(2013)
Mech. Syst. Signal Process.
, vol.38
, Issue.2
, pp. 601-614
-
-
Tran, V.T.1
Yang, B.-S.2
Gu, F.3
Ball, A.4
-
9
-
-
85042513301
-
-
J. Mathew, L. Ma, A. Tan, M. Weijnen, J. Lee, Eds. London, U. K. : Springer
-
G.-M. Lim, Y. Ali, B.-S. Yang, The Fault Diagnosis and Monitoring of Rotating Machines by Thermography, J. Mathew, L. Ma, A. Tan, M. Weijnen, J. Lee, Eds. London, U. K. :Springer, 2012, pp. 557-565.
-
(2012)
The Fault Diagnosis and Monitoring of Rotating Machines by Thermography
, pp. 557-565
-
-
Lim, G.-M.1
Ali, Y.2
Yang, B.-S.3
-
10
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, G. Hinton, "Deep learning, " Nature, vol. 521, no. 7553, pp. 436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
Le Cun, Y.1
Bengio, Y.2
Hinton, G.3
-
11
-
-
84973470244
-
Convolutional neural network based fault detection for rotating machinery
-
O. Janssens, et al., "Convolutional neural network based fault detection for rotating machinery, " J. Sound Vib., vol. 377, pp. 331-345, 2016.
-
(2016)
J. Sound Vib.
, vol.377
, pp. 331-345
-
-
Janssens, O.1
-
12
-
-
0034297837
-
Neural-network-based motor rolling bearing fault diagnosis
-
Oct.
-
B. Li, M.-Y. Chow, Y. Tipsuwan, J. C. Hung, "Neural-network-based motor rolling bearing fault diagnosis, " IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 1060-1069, Oct. 2000.
-
(2000)
IEEE Trans. Ind. Electron.
, vol.47
, Issue.5
, pp. 1060-1069
-
-
Li, B.1
Chow, M.-Y.2
Tipsuwan, Y.3
Hung, J.C.4
-
13
-
-
84946042100
-
Gearbox fault identification and classification with convolutional neural networks
-
Z. Chen, C. Li, R.-V. Sanchez, "Gearbox fault identification and classification with convolutional neural networks, " Shock Vib., vol. 2015, pp. 1-10, 2015.
-
(2015)
Shock Vib.
, vol.2015
, pp. 1-10
-
-
Chen, Z.1
Li, C.2
Sanchez, R.-V.3
-
14
-
-
84919933755
-
Vibration spectrum imaging:Anovel bearing fault classification approach
-
Jan.
-
M. Amar, I. Gondal, C. Wilson, "Vibration spectrum imaging:Anovel bearing fault classification approach, " IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 494-502, Jan. 2015.
-
(2015)
IEEE Trans. Ind. Electron.
, vol.62
, Issue.1
, pp. 494-502
-
-
Amar, M.1
Gondal, I.2
Wilson, C.3
-
15
-
-
84888870402
-
Intelligent condition based monitoring of rotating machines using sparse auto-encoders
-
N. Verma, V. Gupta, M. Sharma, R. Sevakula, "Intelligent condition based monitoring of rotating machines using sparse auto-encoders, " in Proc. IEEE Conf. Progn. Health Manage., 2013, pp. 1-7.
-
(2013)
Proc. IEEE Conf. Progn. Health Manage.
, pp. 1-7
-
-
Verma, N.1
Gupta, V.2
Sharma, M.3
Sevakula, R.4
-
16
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, G. E. Hinton, "Imagenet classification with deep convolutional neural networks, " in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097-1105.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
17
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, "Gradient-based learning applied to document recognition, " Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
18
-
-
84937508363
-
How transferable are features in deep neural networks
-
J. Yosinski, J. Clune, Y. Bengio, H. Lipson, "How transferable are features in deep neural networks, " in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 3320-3328.
-
(2014)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
19
-
-
84908537903
-
CNN features off-the-shelf:An astounding baseline for recognition
-
A. S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, "CNN features off-the-shelf:An astounding baseline for recognition, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2014, pp. 806-813.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
, pp. 806-813
-
-
Razavian, A.S.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
20
-
-
84954161664
-
Deep model based transfer and multi-task learning for biological image analysis
-
W. Zhang, et al., "Deep model based transfer and multi-task learning for biological image analysis, " in Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 1475-1484.
-
(2015)
Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 1475-1484
-
-
Zhang, W.1
-
21
-
-
84950141946
-
Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
-
F. Hu, G.-S. Xia, J. Hu, L. Zhang, "Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery, " Remote Sens., vol. 7, no. 11, pp. 14 680-14 707, 2015.
-
(2015)
Remote Sens.
, vol.7
, Issue.11
, pp. 14680-14707
-
-
Hu, F.1
Xia, G.-S.2
Hu, J.3
Zhang, L.4
-
22
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition, " in Proc. Int. Conf. Learn. Represent., 2015, pp. 1-14.
-
(2015)
Proc. Int. Conf. Learn. Represent.
, pp. 1-14
-
-
Simonyan, K.1
Zisserman, A.2
-
23
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
New York, NY, USA: Springer
-
M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks, " in Computer Vision ECCV 2014 (ser. Lecture Notes in Computer Science). New York, NY, USA: Springer, 2014, pp. 818-833.
-
(2014)
Computer Vision ECCV 2014 (Ser. Lecture Notes in Computer Science)
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
24
-
-
85042494316
-
-
Schaeffler [Online]
-
Schaeffler, "Fag split plummer block housings of series SNV, " pp. 1-84, 2015. [Online]. Available: Http://www.schaeffler.com/remotemedien/media/-shared-media/08-media-library/01-publications/schaeffler-2/tpi/downloads-8/tpi-175-de-en. pdf
-
(2015)
Fag Split Plummer Block Housings of Series SNV
, pp. 1-84
-
-
-
25
-
-
84994201604
-
Towards intelligent lubrication control: Infrared thermal imaging for oil level prediction in bearings
-
O. Janssens, M. Rennuy, S. Devos, M. Loccufier, R. Van de Walle, S. Van Hoecke, "Towards intelligent lubrication control: Infrared thermal imaging for oil level prediction in bearings, " in Proc. IEEE Multi-Conf. Syst. Control, 2016, pp. 1330-1335.
-
(2016)
Proc. IEEE Multi-Conf. Syst. Control
, pp. 1330-1335
-
-
Janssens, O.1
Rennuy, M.2
Devos, S.3
Loccufier, M.4
Van de Walle, R.5
Van Hoecke, S.6
|