-
2
-
-
84880518659
-
Photon: Fault-Tolerant and scalable joining of continuous data streams
-
To appear
-
R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu, A. Reznichenko, D. Ryabkov, M. Singh, and S. Venkataraman. Photon: Fault-Tolerant and scalable joining of continuous data streams. In SIGMOD Conference, 2013. To appear.
-
(2013)
SIGMOD Conference
-
-
Ananthanarayanan, R.1
Basker, V.2
Das, S.3
Gupta, A.4
Jiang, H.5
Qiu, T.6
Reznichenko, A.7
Ryabkov, D.8
Singh, M.9
Venkataraman, S.10
-
4
-
-
0014814325
-
Space/time trade-offs in hash coding with allowable errors
-
July
-
B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13(7), July 1970.
-
(1970)
Commun. ACM
, vol.13
, Issue.7
-
-
Bloom, B.H.1
-
5
-
-
0033280893
-
Beating the hold-out: Bounds for k-fold and progressive cross-validation
-
A. Blum, A. Kalai, and J. Langford. Beating the hold-out: Bounds for k-fold and progressive cross-validation. In COLT, 1999.
-
(1999)
COLT
-
-
Blum, A.1
Kalai, A.2
Langford, J.3
-
8
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Dean, J.1
Corrado, G.S.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.V.6
Mao, M.Z.7
Ranzato, M.8
Senior, A.9
Tucker, P.10
Yang, K.11
Ng, A.Y.12
-
9
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine learning, 40(2):139-157, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
10
-
-
80052423377
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. In COLT, 2010.
-
(2010)
COLT
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
12
-
-
0034206002
-
Summary cache: A scalable wide-Area web cache sharing protocol
-
jun
-
L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: A scalable wide-Area web cache sharing protocol. IEEE/ACM Transactions on Networking, 8(3), jun 2000.
-
(2000)
IEEE/ACM Transactions on Networking
, vol.8
, Issue.3
-
-
Fan, L.1
Cao, P.2
Almeida, J.3
Broder, A.4
-
13
-
-
33646023117
-
An introduction to roc analysis
-
T. Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861-874, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
14
-
-
85025585047
-
Large-scale learning with a small-scale footprint
-
To appear
-
D. Golovin, D. Sculley, H. B. McMahan, and M. Young. Large-scale learning with a small-scale footprint. In ICML, 2013. To appear.
-
(2013)
ICML
-
-
Golovin, D.1
Sculley, D.2
McMahan, H.B.3
Young, M.4
-
16
-
-
77950920138
-
Improving ad relevance in sponsored search
-
D. Hillard, S. Schroedl, E. Manavoglu, H. Raghavan, and C. Leggetter. Improving ad relevance in sponsored search. In Proceedings of the third ACM international conference on Web search and data mining, WSDM '10, pages 361-370, 2010.
-
(2010)
Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM '10
, pp. 361-370
-
-
Hillard, D.1
Schroedl, S.2
Manavoglu, E.3
Raghavan, H.4
Leggetter, C.5
-
17
-
-
84867720412
-
-
CoRR, abs/1207.0580
-
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Improving neural networks by preventing co-Adaptation of feature detectors. CoRR, abs/1207.0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
19
-
-
84867129721
-
Fast prediction of new feature utility
-
H. A. Koepke and M. Bilenko. Fast prediction of new feature utility. In ICML, 2012.
-
(2012)
ICML
-
-
Koepke, H.A.1
Bilenko, M.2
-
20
-
-
64149115569
-
Sparse online learning via truncated gradient
-
J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. JMLR, 10, 2009.
-
(2009)
JMLR
, vol.10
-
-
Langford, J.1
Li, L.2
Zhang, T.3
-
21
-
-
85025629974
-
Value of learning in sponsored search auctions
-
S.-M. Li, M. Mahdian, and R. P. McAfee. Value of learning in sponsored search auctions. In WINE, 2010.
-
(2010)
WINE
-
-
Li, S.-M.1
Mahdian, M.2
McAfee, R.P.3
-
22
-
-
77956210502
-
Exploitation and exploration in a performance based contextual advertising system
-
W. Li, X. Wang, R. Zhang, Y. Cui, J. Mao, and R. Jin. Exploitation and exploration in a performance based contextual advertising system. In KDD, 2010.
-
(2010)
KDD
-
-
Li, W.1
Wang, X.2
Zhang, R.3
Cui, Y.4
Mao, J.5
Jin, R.6
-
23
-
-
84879074176
-
Efficient regularized isotonic regression with application to gene-gene interaction search
-
R. Luss, S. Rosset, and M. Shahar. Efficient regularized isotonic regression with application to gene-gene interaction search. Ann. Appl. Stat., 6(1), 2012.
-
(2012)
Ann. Appl. Stat
, vol.6
, Issue.1
-
-
Luss, R.1
Rosset, S.2
Shahar, M.3
-
24
-
-
84927924832
-
Follow-The-regularized-leader and mirror descent: Equivalence theorems and L1 regularization
-
H. B. McMahan. Follow-The-regularized-leader and mirror descent: Equivalence theorems and L1 regularization. In AISTATS, 2011.
-
(2011)
AISTATS
-
-
McMahan, H.B.1
-
26
-
-
84877796371
-
Adaptive bound optimization for online convex optimization
-
H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization. In COLT, 2010.
-
(2010)
COLT
-
-
McMahan, H.B.1
Streeter, M.2
-
27
-
-
77953322156
-
Predicting good probabilities with supervised learning
-
A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised learning. In ICML, ICML '05, 2005.
-
(2005)
ICML, ICML '05
-
-
Niculescu-Mizil, A.1
Caruana, R.2
-
30
-
-
77956216954
-
Overlapping experiment infrastructure: More, better, faster experimentation
-
D. Tang, A. Agarwal, D. O'Brien, and M. Meyer. Overlapping experiment infrastructure: more, better, faster experimentation. In KDD, pages 17-26, 2010.
-
(2010)
KDD
, pp. 17-26
-
-
Tang, D.1
Agarwal, A.2
O'Brien, D.3
Meyer, M.4
-
31
-
-
71149087699
-
Feature hashing for large scale multitask learning
-
ACM
-
K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for large scale multitask learning. In ICML, pages 1113-1120. ACM, 2009.
-
(2009)
ICML
, pp. 1113-1120
-
-
Weinberger, K.1
Dasgupta, A.2
Langford, J.3
Smola, A.4
Attenberg, J.5
-
32
-
-
77956501975
-
Dual averaging method for regularized stochastic learning and online optimization
-
L. Xiao. Dual averaging method for regularized stochastic learning and online optimization. In NIPS, 2009.
-
(2009)
NIPS
-
-
Xiao, L.1
-
33
-
-
77950884579
-
A novel click model and its applications to online advertising
-
ACM
-
Z. A. Zhu, W. Chen, T. Minka, C. Zhu, and Z. Chen. A novel click model and its applications to online advertising. In Proceedings of the third ACM international conference on Web search and data mining, pages 321-330. ACM, 2010.
-
(2010)
Proceedings of the Third ACM International Conference on Web Search and Data Mining
, pp. 321-330
-
-
Zhu, Z.A.1
Chen, W.2
Minka, T.3
Zhu, C.4
Chen, Z.5
-
34
-
-
1942484421
-
Online convex programming and generalized infinitesimal gradient ascent
-
M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML, 2003.
-
(2003)
ICML
-
-
Zinkevich, M.1
|