메뉴 건너뛰기




Volumn Part F128815, Issue , 2013, Pages 1222-1230

Ad click prediction: A view from the trenches

Author keywords

Data mining; Large scale learning; Online advertising

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; E-LEARNING; FORECASTING; LEARNING ALGORITHMS; LEARNING SYSTEMS; MARKETING; PROFESSIONAL ASPECTS;

EID: 85022224234     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2487575.2488200     Document Type: Conference Paper
Times cited : (961)

References (34)
  • 4
    • 0014814325 scopus 로고
    • Space/time trade-offs in hash coding with allowable errors
    • July
    • B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13(7), July 1970.
    • (1970) Commun. ACM , vol.13 , Issue.7
    • Bloom, B.H.1
  • 5
    • 0033280893 scopus 로고    scopus 로고
    • Beating the hold-out: Bounds for k-fold and progressive cross-validation
    • A. Blum, A. Kalai, and J. Langford. Beating the hold-out: Bounds for k-fold and progressive cross-validation. In COLT, 1999.
    • (1999) COLT
    • Blum, A.1    Kalai, A.2    Langford, J.3
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine learning, 40(2):139-157, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 10
    • 80052423377 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. In COLT, 2010.
    • (2010) COLT
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 13
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • T. Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861-874, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 14
    • 85025585047 scopus 로고    scopus 로고
    • Large-scale learning with a small-scale footprint
    • To appear
    • D. Golovin, D. Sculley, H. B. McMahan, and M. Young. Large-scale learning with a small-scale footprint. In ICML, 2013. To appear.
    • (2013) ICML
    • Golovin, D.1    Sculley, D.2    McMahan, H.B.3    Young, M.4
  • 19
    • 84867129721 scopus 로고    scopus 로고
    • Fast prediction of new feature utility
    • H. A. Koepke and M. Bilenko. Fast prediction of new feature utility. In ICML, 2012.
    • (2012) ICML
    • Koepke, H.A.1    Bilenko, M.2
  • 20
    • 64149115569 scopus 로고    scopus 로고
    • Sparse online learning via truncated gradient
    • J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. JMLR, 10, 2009.
    • (2009) JMLR , vol.10
    • Langford, J.1    Li, L.2    Zhang, T.3
  • 21
    • 85025629974 scopus 로고    scopus 로고
    • Value of learning in sponsored search auctions
    • S.-M. Li, M. Mahdian, and R. P. McAfee. Value of learning in sponsored search auctions. In WINE, 2010.
    • (2010) WINE
    • Li, S.-M.1    Mahdian, M.2    McAfee, R.P.3
  • 22
    • 77956210502 scopus 로고    scopus 로고
    • Exploitation and exploration in a performance based contextual advertising system
    • W. Li, X. Wang, R. Zhang, Y. Cui, J. Mao, and R. Jin. Exploitation and exploration in a performance based contextual advertising system. In KDD, 2010.
    • (2010) KDD
    • Li, W.1    Wang, X.2    Zhang, R.3    Cui, Y.4    Mao, J.5    Jin, R.6
  • 23
    • 84879074176 scopus 로고    scopus 로고
    • Efficient regularized isotonic regression with application to gene-gene interaction search
    • R. Luss, S. Rosset, and M. Shahar. Efficient regularized isotonic regression with application to gene-gene interaction search. Ann. Appl. Stat., 6(1), 2012.
    • (2012) Ann. Appl. Stat , vol.6 , Issue.1
    • Luss, R.1    Rosset, S.2    Shahar, M.3
  • 24
    • 84927924832 scopus 로고    scopus 로고
    • Follow-The-regularized-leader and mirror descent: Equivalence theorems and L1 regularization
    • H. B. McMahan. Follow-The-regularized-leader and mirror descent: Equivalence theorems and L1 regularization. In AISTATS, 2011.
    • (2011) AISTATS
    • McMahan, H.B.1
  • 26
    • 84877796371 scopus 로고    scopus 로고
    • Adaptive bound optimization for online convex optimization
    • H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization. In COLT, 2010.
    • (2010) COLT
    • McMahan, H.B.1    Streeter, M.2
  • 27
    • 77953322156 scopus 로고    scopus 로고
    • Predicting good probabilities with supervised learning
    • A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised learning. In ICML, ICML '05, 2005.
    • (2005) ICML, ICML '05
    • Niculescu-Mizil, A.1    Caruana, R.2
  • 30
    • 77956216954 scopus 로고    scopus 로고
    • Overlapping experiment infrastructure: More, better, faster experimentation
    • D. Tang, A. Agarwal, D. O'Brien, and M. Meyer. Overlapping experiment infrastructure: more, better, faster experimentation. In KDD, pages 17-26, 2010.
    • (2010) KDD , pp. 17-26
    • Tang, D.1    Agarwal, A.2    O'Brien, D.3    Meyer, M.4
  • 32
    • 77956501975 scopus 로고    scopus 로고
    • Dual averaging method for regularized stochastic learning and online optimization
    • L. Xiao. Dual averaging method for regularized stochastic learning and online optimization. In NIPS, 2009.
    • (2009) NIPS
    • Xiao, L.1
  • 34
    • 1942484421 scopus 로고    scopus 로고
    • Online convex programming and generalized infinitesimal gradient ascent
    • M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML, 2003.
    • (2003) ICML
    • Zinkevich, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.