메뉴 건너뛰기




Volumn 2, Issue 6, 2017, Pages

Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode

Author keywords

[No Author keywords available]

Indexed keywords

ATOMIC LAYER DEPOSITION; ELECTROCHEMISTRY; ELECTROLYTES; ENERGY CONVERSION; LIGHT ABSORPTION; SILICON; SODIUM HYDROXIDE; SOLAR ENERGY; TEMPERATURE; THIN FILMS; TITANIUM DIOXIDE;

EID: 85021735063     PISSN: None     EISSN: 20587546     Source Type: Journal    
DOI: 10.1038/nenergy.2017.45     Document Type: Article
Times cited : (236)

References (41)
  • 1
    • 84955493590 scopus 로고    scopus 로고
    • Research opportunities to advance solar energy utilization
    • Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, 1920 (2016).
    • (2016) Science , vol.351 , pp. 1920
    • Lewis, N.S.1
  • 2
    • 0032540476 scopus 로고    scopus 로고
    • Monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
    • Khaselev, O. & Turner, J. A. Monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425-427 (1998).
    • (1998) Science , vol.280 , pp. 425-427
    • Khaselev, O.1    Turner, J.A.2
  • 3
    • 78449289476 scopus 로고    scopus 로고
    • Solar water splitting cells
    • Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446-6473 (2010).
    • (2010) Chem. Rev. , vol.110 , pp. 6446-6473
    • Walter, M.G.1
  • 4
    • 84884879248 scopus 로고    scopus 로고
    • Water-splitting catalysis and solar fuel devices: Artificial leaves on the move
    • Joya, K. S., Joya, Y. F., Ocakoglu, K. & van de Krol, R. Water-splitting catalysis and solar fuel devices: artificial leaves on the move. Angew. Chem. Int. Ed. 52, 10426-10437 (2013).
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 10426-10437
    • Joya, K.S.1    Joya, Y.F.2    Ocakoglu, K.3    Van De Krol, R.4
  • 5
    • 84887776735 scopus 로고    scopus 로고
    • High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation
    • Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836-840 (2013).
    • (2013) Science , vol.342 , pp. 836-840
    • Kenney, M.J.1
  • 6
    • 84974678646 scopus 로고    scopus 로고
    • Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis
    • Liu, C., Colon, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210-1213 (2016).
    • (2016) Science , vol.352 , pp. 1210-1213
    • Liu, C.1    Colon, B.C.2    Ziesack, M.3    Silver, P.A.4    Nocera, D.G.5
  • 7
    • 79960245034 scopus 로고    scopus 로고
    • Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting
    • Wang, G. et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026-3033 (2011).
    • (2011) Nano Lett. , vol.11 , pp. 3026-3033
    • Wang, G.1
  • 8
    • 84883143705 scopus 로고    scopus 로고
    • Identifying champion nanostructures for solar water-splitting
    • Warren, S. C. et al. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842-849 (2013).
    • (2013) Nat. Mater. , vol.12 , pp. 842-849
    • Warren, S.C.1
  • 9
    • 84896735953 scopus 로고    scopus 로고
    • Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting
    • Kim, T. W. & Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990-994 (2014).
    • (2014) Science , vol.343 , pp. 990-994
    • Kim, T.W.1    Choi, K.S.2
  • 10
    • 78650811764 scopus 로고    scopus 로고
    • Metal-assisted chemical etching of silicon: A review
    • Huang, Z., Geyer, N., Werner, P., de Boor, J. & Gosele, U. Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23, 285-308 (2011).
    • (2011) Adv. Mater. , vol.23 , pp. 285-308
    • Huang, Z.1    Geyer, N.2    Werner, P.3    De Boor, J.4    Gosele, U.5
  • 11
    • 79952056044 scopus 로고    scopus 로고
    • Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion
    • Yuan, G. et al. Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion. Angew. Chem. Int. Ed. 50, 2334-2338 (2011).
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 2334-2338
    • Yuan, G.1
  • 12
    • 79955702273 scopus 로고    scopus 로고
    • Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting
    • Oh, J., Deutsch, T. G., Yuan, H.-C. & Branz, H. M. Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting. Energy Environ. Sci. 4, 1690-1694 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 1690-1694
    • Oh, J.1    Deutsch, T.G.2    Yuan, H.-C.3    Branz, H.M.4
  • 13
    • 84926631957 scopus 로고    scopus 로고
    • Oxidatively stable nanoporous silicon photocathodes with enhanced onset voltage for photoelectrochemical proton reduction
    • Zhao, Y. et al. Oxidatively stable nanoporous silicon photocathodes with enhanced onset voltage for photoelectrochemical proton reduction. Nano Lett. 15, 2517-2525 (2015).
    • (2015) Nano Lett. , vol.15 , pp. 2517-2525
    • Zhao, Y.1
  • 14
    • 84964680270 scopus 로고    scopus 로고
    • Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon
    • Ali, M. et al. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 7, 11335 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 11335
    • Ali, M.1
  • 15
    • 84869094983 scopus 로고    scopus 로고
    • An 18. 2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures
    • Oh, J., Yuan, H. C. & Branz, H. M. An 18. 2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotech. 7, 743-748 (2012).
    • (2012) Nat. Nanotech. , vol.7 , pp. 743-748
    • Oh, J.1    Yuan, H.C.2    Branz, H.M.3
  • 16
    • 84940713122 scopus 로고    scopus 로고
    • Black silicon solar cells with interdigitated back-contacts achieve 22. 1% efficiency
    • Savin, H. et al. Black silicon solar cells with interdigitated back-contacts achieve 22. 1% efficiency. Nat. Nanotech. 10, 624-628 (2015).
    • (2015) Nat. Nanotech. , vol.10 , pp. 624-628
    • Savin, H.1
  • 17
    • 79959495747 scopus 로고    scopus 로고
    • Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
    • Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539-544 (2011).
    • (2011) Nat. Mater. , vol.10 , pp. 539-544
    • Chen, Y.W.1
  • 18
    • 84938885048 scopus 로고    scopus 로고
    • P-type transparent conducting oxide/n-type semiconductor heterojunctions for efficient and stable solar water oxidation
    • Chen, L. et al. p-type transparent conducting oxide/n-type semiconductor heterojunctions for efficient and stable solar water oxidation. J. Am. Chem. Soc. 137, 9595-9603 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 9595-9603
    • Chen, L.1
  • 19
    • 84925955995 scopus 로고    scopus 로고
    • A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst
    • Ji, L. et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotech. 10, 84-90 (2015).
    • (2015) Nat. Nanotech. , vol.10 , pp. 84-90
    • Ji, L.1
  • 20
    • 84925428446 scopus 로고    scopus 로고
    • Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films
    • Sun, K. et al. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. Proc. Natl Acad. Sci. USA 112, 3612-3617 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 3612-3617
    • Sun, K.1
  • 21
    • 84885457201 scopus 로고    scopus 로고
    • Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition
    • Wang, W. C. et al. Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition. ACS Appl. Mater. Interfaces 5, 9752-9759 (2013).
    • (2013) ACS Appl. Mater. Interfaces , vol.5 , pp. 9752-9759
    • Wang, W.C.1
  • 22
    • 84930211426 scopus 로고    scopus 로고
    • Efficiency enhancement of nanotextured black silicon solar cells using Al2O3/TiO2 dual-layer passivation stack prepared by atomic layer deposition
    • Wang, W. C., Tsai, M. C., Yang, J., Hsu, C. & Chen, M. J. efficiency enhancement of nanotextured black silicon solar cells using Al2O3/TiO2 dual-layer passivation stack prepared by atomic layer deposition. ACS Appl. Mater. Interfaces 7, 10228-10237 (2015).
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 10228-10237
    • Wang, W.C.1    Tsai, M.C.2    Yang, J.3    Hsu, C.4    Chen, M.J.5
  • 23
    • 84901606058 scopus 로고    scopus 로고
    • Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
    • Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005-1009 (2014).
    • (2014) Science , vol.344 , pp. 1005-1009
    • Hu, S.1
  • 24
    • 84951310560 scopus 로고    scopus 로고
    • Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst
    • Gu, J. et al. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst. Nat. Mater. 15, 456-460 (2016).
    • (2016) Nat. Mater. , vol.15 , pp. 456-460
    • Gu, J.1
  • 25
    • 84949667222 scopus 로고    scopus 로고
    • Microscopic study of atomic layer deposition of TiO2 on GaAs and its photocatalytic application
    • Qiu, J. et al. Microscopic study of atomic layer deposition of TiO2 on GaAs and its photocatalytic application. Chem. Mater. 27, 7977-7981 (2015).
    • (2015) Chem. Mater. , vol.27 , pp. 7977-7981
    • Qiu, J.1
  • 26
    • 84919625050 scopus 로고    scopus 로고
    • Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1. 0M KOH(aq) using conformal coatings of amorphous TiO2
    • Shaner, M. R., Hu, S., Sun, K. & Lewis, N. S. Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1. 0M KOH(aq) using conformal coatings of amorphous TiO2. Energy Environ. Sci. 8, 203-207 (2015).
    • (2015) Energy Environ. Sci. , vol.8 , pp. 203-207
    • Shaner, M.R.1    Hu, S.2    Sun, K.3    Lewis, N.S.4
  • 27
    • 84981765500 scopus 로고    scopus 로고
    • Photoelectrochemical H2 evolution with a hydrogenase immobilized on a TiO2-protected silicon electrode
    • Lee, C. Y., Park, H. S., Fontecilla-Camps, J. C. & Reisner, E. Photoelectrochemical H2 evolution with a hydrogenase immobilized on a TiO2-protected silicon electrode. Angew. Chem. Int. Ed. 55, 5971-5974 (2016).
    • (2016) Angew. Chem. Int. Ed. , vol.55 , pp. 5971-5974
    • Lee, C.Y.1    Park, H.S.2    Fontecilla-Camps, J.C.3    Reisner, E.4
  • 28
    • 84945460089 scopus 로고    scopus 로고
    • An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation
    • Hill, J. C., Landers, A. T. & Switzer, J. A. An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation. Nat. Mater. 14, 1150-1155 (2015).
    • (2015) Nat. Mater. , vol.14 , pp. 1150-1155
    • Hill, J.C.1    Landers, A.T.2    Switzer, J.A.3
  • 29
    • 85017073501 scopus 로고    scopus 로고
    • Gold-supported cerium-doped NiOx catalysts for water oxidation
    • Ng, J. W. D. et al. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 1, 16053 (2016).
    • (2016) Nat. Energy , vol.1 , pp. 16053
    • Ng, J.W.D.1
  • 30
    • 84949184918 scopus 로고    scopus 로고
    • Co(OH)2@PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction
    • Feng, J. X. et al. Co(OH)2@PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 27, 7051-7057 (2015).
    • (2015) Adv. Mater. , vol.27 , pp. 7051-7057
    • Feng, J.X.1
  • 31
    • 84994644852 scopus 로고    scopus 로고
    • A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes
    • Yang, J. et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nat. Mater. 16, 335-341 (2017).
    • (2017) Nat. Mater. , vol.16 , pp. 335-341
    • Yang, J.1
  • 32
    • 84899717861 scopus 로고    scopus 로고
    • Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces
    • Yang, J. et al. efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces. J. Am. Chem. Soc. 136, 6191-6194 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 6191-6194
    • Yang, J.1
  • 33
    • 84890523711 scopus 로고    scopus 로고
    • Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes
    • Lin, F. & Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 13, 81-86 (2014).
    • (2014) Nat. Mater. , vol.13 , pp. 81-86
    • Lin, F.1    Boettcher, S.W.2
  • 34
    • 85025100465 scopus 로고    scopus 로고
    • Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry
    • Laskowski, F. L., Nellist, M. R., Venkatkarthickab, R. & Boettcher, S. W. Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry. Energy Environ. Sci. 10, 570-579 (2017).
    • (2017) Energy Environ. Sci. , vol.10 , pp. 570-579
    • Laskowski, F.L.1    Nellist, M.R.2    Venkatkarthickab, R.3    Boettcher, S.W.4
  • 35
    • 84923332748 scopus 로고    scopus 로고
    • Stable solar-driven water oxidation to O2(g) by Ni-oxide-coated silicon photoanodes
    • Sun, K. et al. Stable solar-driven water oxidation to O2(g) by Ni-oxide-coated silicon photoanodes. J. Phys. Chem. Lett. 6, 592-598 (2015).
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 592-598
    • Sun, K.1
  • 36
    • 84947870907 scopus 로고    scopus 로고
    • Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide
    • Caban-Acevedo, M. et al. efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14, 1245-1251 (2015).
    • (2015) Nat. Mater. , vol.14 , pp. 1245-1251
    • Caban-Acevedo, M.1
  • 37
    • 77949437431 scopus 로고    scopus 로고
    • Light trapping in silicon nanowire solar cells
    • Garnett, E. & Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082-1087 (2010).
    • (2010) Nano Lett. , vol.10 , pp. 1082-1087
    • Garnett, E.1    Yang, P.2
  • 38
    • 67649111365 scopus 로고    scopus 로고
    • Nanostructured black silicon and the optical reflectance of graded-density surfaces
    • Branz, H. M. et al. Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl. Phys. Lett. 94, 231121 (2009).
    • (2009) Appl. Phys. Lett. , vol.94 , pp. 231121
    • Branz, H.M.1
  • 39
    • 84946882264 scopus 로고    scopus 로고
    • Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes
    • Yang, W. et al. Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes. Nano Lett. 15, 7574-7580 (2015).
    • (2015) Nano Lett. , vol.15 , pp. 7574-7580
    • Yang, W.1
  • 40
    • 84900469802 scopus 로고    scopus 로고
    • Evolution of hollow TiO2 nanostructures via the Kirkendall Effiect driven by cation exchange with enhanced photoelectrochemical performance
    • Yu, Y., Yin, X., Kvit, A. &Wang, X. Evolution of hollow TiO2 nanostructures via the Kirkendall Effiect driven by cation exchange with enhanced photoelectrochemical performance. Nano Lett. 14, 2528-2535 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 2528-2535
    • Yu, Y.1    Yin, X.2    Kvit, A.3    Wang, X.4
  • 41
    • 84921758581 scopus 로고    scopus 로고
    • Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures
    • Yu, Y. et al. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. ACS Nano 9, 564-572 (2015).
    • (2015) ACS Nano , vol.9 , pp. 564-572
    • Yu, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.