메뉴 건너뛰기




Volumn , Issue , 2016, Pages 5686-5697

Interacting with predictions: Visual inspection of black-box machine learning models

Author keywords

Interactive machine learning; Model visualization; Partial dependence; Predictive modeling; Visual analytics

Indexed keywords

ARTIFICIAL INTELLIGENCE; DIAGNOSIS; FORECASTING; HUMAN COMPUTER INTERACTION; HUMAN ENGINEERING; MEDICAL COMPUTING; PREDICTIVE ANALYTICS; VISUALIZATION;

EID: 84979782013     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2858036.2858529     Document Type: Conference Paper
Times cited : (392)

References (46)
  • 6
    • 85004448586 scopus 로고    scopus 로고
    • Summaries: A special issue on evaluation for information visualization
    • 2011
    • Enrico Bertini, Heidi Lam, and Adam Perer. 2011. Summaries: a special issue on evaluation for information visualization. Information Visualization 10, 3 (2011).
    • (2011) Information Visualization , vol.10 , Issue.3
    • Bertini, E.1    Lam, H.2    Perer, A.3
  • 7
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • 08 2001
    • Leo Breiman. 2001. Statistical Modeling: The Two Cultures. Statist. Sci. 16, 3(08 2001), 199-231.
    • (2001) Statist. Sci , vol.16 , Issue.3 , pp. 199-231
    • Breiman, L.1
  • 8
    • 0035789668 scopus 로고    scopus 로고
    • Gaining insights into support vector machine pattern classifiers using projection-based tour methods
    • Doina Caragea, Dianne Cook, and Vasant Honavar. 2001. Gaining Insights into Support Vector Machine Pattern Classifiers Using Projection-Based Tour Methods. In Proceedings of the KDD Conference. 251-256.
    • (2001) Proceedings of the KDD Conference , pp. 251-256
    • Caragea, D.1    Cook, D.2    Honavar, V.3
  • 11
    • 84871386793 scopus 로고    scopus 로고
    • Using sensitivity analysis and visualization techniques to open black box data mining models
    • 2013
    • Paulo Cortez and Mark J. Embrechts. 2013. Using sensitivity analysis and visualization techniques to open black box data mining models. Information Sciences 225(2013), 1-17.
    • (2013) Information Sciences , vol.225 , pp. 1-17
    • Cortez, P.1    Embrechts, M.J.2
  • 13
    • 9444222046 scopus 로고    scopus 로고
    • Visualizing class probability estimators
    • Nada Lavra, Dragan Gamberger, Ljupo Todorovski, and Hendrik Blockeel Eds.. Lecture Notes in Computer Science, Springer Berlin Heidelberg
    • Eibe Frank and Mark Hall. 2003. Visualizing Class Probability Estimators. In Knowledge Discovery in Databases (PKDD), Nada Lavra, Dragan Gamberger, Ljupo Todorovski, and Hendrik Blockeel (Eds.). Lecture Notes in Computer Science, Vol. 2838. Springer Berlin Heidelberg, 168-179.
    • (2003) Knowledge Discovery in Databases (PKDD) , vol.2838 , pp. 168-179
    • Frank, E.1    Hall, M.2
  • 14
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • 10 2001
    • Jerome H. Friedman. 2001. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29, 5(10 2001), 1189-1232.
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 15
    • 84906989357 scopus 로고    scopus 로고
    • Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
    • March 2014
    • Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. 2014. Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation. Journal of Computational and Graphical Statistics (March 2014).
    • (2014) Journal of Computational and Graphical Statistics
    • Goldstein, A.1    Kapelner, A.2    Bleich, J.3    Pitkin, E.4
  • 18
    • 84871383861 scopus 로고    scopus 로고
    • Signal propagation in Bayesian networks and its relationship with intrinsically multivariate predictive variables
    • March 2013
    • David Correa Martins Jr., Evaldo A. de Oliveira, Ulisses de Mendonça Braga Neto, Ronaldo Fumio Hashimoto, and Roberto Marcondes Cesar Jr. 2013. Signal propagation in Bayesian networks and its relationship with intrinsically multivariate predictive variables. Information Sciences 225(March 2013), 18-34.
    • (2013) Information Sciences , vol.225 , pp. 18-34
    • Martins, D.C.1    De Oliveira, E.A.2    De Mendonça Braga Neto, U.3    Hashimoto, R.F.4    Cesar, R.M.5
  • 22
    • 84937824985 scopus 로고    scopus 로고
    • The Bayesian case model: A generative approach for case-based reasoning and prototype classification
    • Been Kim, Cynthia Rudin, and Julie A Shah. 2014. The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification. In Advances in Neural Information Processing Systems. 1952-1960.
    • (2014) Advances in Neural Information Processing Systems , pp. 1952-1960
    • Kim, B.1    Rudin, C.2    Shah, J.A.3
  • 23
    • 84910066488 scopus 로고    scopus 로고
    • INFUSE: Interactive feature selection for predictive modeling of high dimensional data
    • Dec. 2014
    • Josua Krause, Adam Perer, and Enrico Bertini. 2014. INFUSE: Interactive Feature Selection for Predictive Modeling of High Dimensional Data. Visualization and Computer Graphics, IEEE Transactions on 20, 12(Dec. 2014), 1614-1623.
    • (2014) Visualization and Computer Graphics, IEEE Transactions on , vol.20 , Issue.12 , pp. 1614-1623
    • Krause, J.1    Perer, A.2    Bertini, E.3
  • 26
    • 84924195989 scopus 로고    scopus 로고
    • Sports data mining: Predicting results for the college football games
    • September 2014, Knowledge-Based and Intelligent Information & Engineering Systems 18th Annual Conference KES, Proceedings of
    • Carson K. Leung and Kyle W. Joseph. 2014. Sports Data Mining: Predicting Results for the College Football Games. Procedia Computer Science 35(September 2014), 710-719. Knowledge-Based and Intelligent Information & Engineering Systems 18th Annual Conference (KES), Proceedings of.
    • (2014) Procedia Computer Science , vol.35 , pp. 710-719
    • Leung, C.K.1    Joseph, K.W.2
  • 30
    • 84907081155 scopus 로고    scopus 로고
    • PARAMO: A PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records
    • 2013
    • Kenney Ng, Amol Ghoting, Steven R. Steinhubl, Walter F. Stewart, Bradley Malin, and Jimeng Sun. 2013. PARAMO: A PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records. Journal of Biomedical Informatics (2013).
    • (2013) Journal of Biomedical Informatics
    • Ng, K.1    Ghoting, A.2    Steinhubl, S.R.3    Stewart, W.F.4    Malin, B.5    Sun, J.6
  • 31
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the "black box": A randomization approach for understanding variable contributions in artificial neural networks
    • 2002
    • Julian D. Olden and Donald A. Jackson. 2002. Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling 154, 12(2002), 135-150.
    • (2002) Ecological Modelling , vol.154 , Issue.12 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 37
    • 0034446095 scopus 로고    scopus 로고
    • Visualizing high-dimensional predictive model quality
    • Penny Rheingans and Marie desJardins. 2000. Visualizing high-dimensional predictive model quality. In Visualization. 493-496.
    • (2000) Visualization , pp. 493-496
    • Rheingans, P.1    DesJardins, M.2
  • 38
    • 34547210191 scopus 로고    scopus 로고
    • Strategies for evaluating information visualization tools: Multi-dimensional in-depth long-term case studies
    • Ben Shneiderman and Catherine Plaisant. 2006. Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies. In Proceedings of the 2006 BELIV Workshop. 1-7.
    • (2006) Proceedings of the 2006 BELIV Workshop , pp. 1-7
    • Shneiderman, B.1    Plaisant, C.2
  • 39
  • 41
    • 84997838497 scopus 로고    scopus 로고
    • Maximally informative hierarchical representations of high-dimensional data
    • Greg Ver Steeg and Aram Galstyan. 2015. Maximally Informative Hierarchical Representations of High-Dimensional Data. In AISTATS'15.
    • (2015) AISTATS'15
    • Steeg, G.V.1    Galstyan, A.2
  • 45
    • 84937849825 scopus 로고    scopus 로고
    • Discovering structure in high-dimensional data through correlation explanation
    • Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger Eds.. Curran Associates, Inc.
    • Greg Ver Steeg and Aram Galstyan. 2014. Discovering Structure in High-Dimensional Data Through Correlation Explanation. In Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 577-585.
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 577-585
    • Steeg, G.V.1    Galstyan, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.