-
1
-
-
84878979335
-
The big challenges of big data
-
Marx, V. The big challenges of big data. Nature 498, 255-260, doi:10.1038/498255a (2013).
-
(2013)
Nature
, vol.498
, pp. 255-260
-
-
Marx, V.1
-
2
-
-
51349115095
-
Big data: The future of biocuration
-
Howe D., et al. Big data: The future of biocuration. Nature 2008, 455, 47-50 (2008).
-
(2008)
Nature 2008
, vol.455
, pp. 47-50
-
-
Howe, D.1
-
3
-
-
84875479835
-
Big (chemistry) data
-
Gibb, B. C. Big (chemistry) data. Nat. Chem. 5, 248-249, doi:10.1038/nchem.1604 (2013).
-
(2013)
Nat. Chem.
, vol.5
, pp. 248-249
-
-
Gibb, B.C.1
-
4
-
-
84892142922
-
The learning machines
-
Jones, N. The learning machines. Nature 505, 146-148, doi:10.1038/505146a (2014).
-
(2014)
Nature
, vol.505
, pp. 146-148
-
-
Jones, N.1
-
5
-
-
84937801713
-
Machine learning: Trends, perspectives, prospects
-
Jordan, M. I., Mitchell, T. M. Machine learning: Trends, perspectives, prospects. Science 349, 255-260, doi:10.1126/science. aaa8415 (2015).
-
(2015)
Science
, vol.349
, pp. 255-260
-
-
Jordan, M.I.1
Mitchell, T.M.2
-
6
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition.
-
Hilton, G., et al. Deep neural networks for acoustic modeling in speech recognition. IEEE Sign. Process. Mag. 29, 82-97, doi:10.1109/MSP.2012.2205597 (2012).
-
(2012)
IEEE Sign. Process. Mag.
, vol.29
, pp. 82-97
-
-
Hilton, G.1
-
7
-
-
80053074478
-
Image processing and machine learning for fully automated probabilistic evaluation of medical images
-
Sajn, L., Kukar, M. Image processing and machine learning for fully automated probabilistic evaluation of medical images. Comp. Meth. Prog. Biomed. 104, E75-E86, doi:10.1016/j.cmpb.2010.06.021 (2011).
-
(2011)
Comp. Meth. Prog. Biomed.
, vol.104
, pp. E75-E86
-
-
Sajn, L.1
Kukar, M.2
-
8
-
-
33644959172
-
Metabolomics modelling and machine learning in systems biology-towards an understanding of the languages of cells
-
Kell, D. B. Metabolomics, modelling and machine learning in systems biology-towards an understanding of the languages of cells. FEBS J. 273, 873-894, doi:10.1111/j.1742-4658.2006.05136.x (2006).
-
(2006)
FEBS J.
, vol.273
, pp. 873-894
-
-
Kell, D.B.1
-
9
-
-
84937786173
-
Economic reasoning and artificial intelligence
-
Parkes, D. C., Wellman, M. P. Economic reasoning and artificial intelligence. Science 349, 267-272, doi:10.1126/science.aaa8403 (2015).
-
(2015)
Science
, vol.349
, pp. 267-272
-
-
Parkes, D.C.1
Wellman, M.P.2
-
10
-
-
84862647729
-
Predicting a small molecule-kinase interaction map: A machine learning approach
-
Buchwald, F., Richter, L., Kramer, S. Predicting a small molecule-kinase interaction map: A machine learning approach. J. Cheminf. 3, 22 (2011).
-
(2011)
J. Cheminf.
, vol.3
, pp. 22
-
-
Buchwald, F.1
Richter, L.2
Kramer, S.3
-
11
-
-
77952768125
-
Ranking chemical structures for drug discovery: A new machine learning approach
-
Agarwal, S., Dugar, D., Sengupta, S. Ranking chemical structures for drug discovery: A new machine learning approach. J. Chem. Inf. Model. 50, 716-731, doi:10.1021/ci9003865 (2010).
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 716-731
-
-
Agarwal, S.1
Dugar, D.2
Sengupta, S.3
-
12
-
-
51349131079
-
Machine learning for in silico virtual screening and chemical genomics: New strategies
-
Vert, J.-P., Jacob, L. Machine learning for in silico virtual screening and chemical genomics: New strategies. Comb. Chem. High Throughput Screening 11, 677-685, doi:10.2174/138620708785739899 (2008).
-
(2008)
Comb. Chem. High Throughput Screening
, vol.11
, pp. 677-685
-
-
Vert, J.-P.1
Jacob, L.2
-
13
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
-
Lusci, A., Pollastri, G., Baldi, P. Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules. J. Chem. Inf. Model. 53, 1563-1575, doi:10.1021/ci400187y (2013).
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
14
-
-
17644370009
-
Ab initio modelling-Genesis of crystal structures
-
van de Walle, A. Ab initio modelling-Genesis of crystal structures. Nat. Mater. 4, 362-363, doi:10.1038/nmat1378 (2005).
-
(2005)
Nat. Mater.
, vol.4
, pp. 362-363
-
-
Van De Walle, A.1
-
15
-
-
84946476177
-
Learning from the harvard clean energy project: The use of neural networks to accelerate materials discovery
-
Pyzer-Knapp, E. O., Li, K., Aspuru-Guzik, A. Learning from the Harvard Clean Energy Project: The use of neural networks to accelerate materials discovery. Adv. Funct. Mater. 25, 6495-6502, doi:10.1038/sdata.2016.86 (2015).
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 6495-6502
-
-
Pyzer-Knapp, E.O.1
Li, K.2
Aspuru-Guzik, A.3
-
16
-
-
84969849662
-
Machine-learning-assisted materials discovery using failed experiments
-
Raccuglia, R., et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73-76, doi:10.1038/nature17439 (2016).
-
(2016)
Nature
, vol.533
, pp. 73-76
-
-
Raccuglia, R.1
-
17
-
-
84921799235
-
Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity
-
Schneider, N., Lowe, D. M., Sayle, R. A., Landrum, G. A. Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity. J. Chem. Inf. Model. 55, 39-53, doi:10.1021/ci5006614 (2015).
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 39-53
-
-
Schneider, N.1
Lowe, D.M.2
Sayle, R.A.3
Landrum, G.A.4
-
18
-
-
77953313401
-
Application of molecular topology for the prediction of the reaction times and yields under solvent-free conditions
-
Gálvez, J., Gálvez-Llompart, M., Garciá-Domenech, R. Application of molecular topology for the prediction of the reaction times and yields under solvent-free conditions. Green Chem. 12, 1056-1061, doi:10.1039/b926047a (2010).
-
(2010)
Green Chem.
, vol.12
, pp. 1056-1061
-
-
Gálvez, J.1
Gálvez-Llompart, M.2
Garciá-Domenech, R.3
-
19
-
-
79952264916
-
Application of molecular topology for the prediction of reaction yields and anti-Inflammatory activity of heterocyclic amidine derivatives
-
Pla-Franco, J., Gálvez-Llompart, M., Gálvez, J., Garciá-Domenech, R. Application of molecular topology for the prediction of reaction yields and anti-Inflammatory activity of heterocyclic amidine derivatives. Int. J. Mol. Sci. 12, 1281-1292, doi:10.3390/ijms12021281 (2011).
-
(2011)
Int. J. Mol. Sci.
, vol.12
, pp. 1281-1292
-
-
Pla-Franco, J.1
Gálvez-Llompart, M.2
Gálvez, J.3
Garciá-Domenech, R.4
-
20
-
-
84867780136
-
Reaction Predictor: Prediction of complex chemical reactions at the mechanistic level using machine learning
-
Kayala, M. A., Baldi, P. ReactionPredictor: Prediction of complex chemical reactions at the mechanistic level using machine learning. J. Chem. Inf. Model. 52, 2526-2540, doi:10.1021/ci3003039 (2012).
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 2526-2540
-
-
Kayala, M.A.1
Baldi, P.2
-
21
-
-
85012967324
-
Neural networks for the prediction organic chemistry reactions
-
Wei, J. N., Duvenaud, D., Aspuru-Guzik, A. Neural networks for the prediction organic chemistry reactions. ACS Central Science 2, (725-732 (2016).
-
(2016)
ACS Central Science
, vol.2
, pp. 725-732
-
-
Wei, J.N.1
Duvenaud, D.2
Aspuru-Guzik, A.3
-
22
-
-
84940719783
-
A priori estimation of organic reaction yields
-
Emami, F. S., et al. A priori estimation of organic reaction yields. Angew. Chem. Int. Ed. 54, 10797-10801, doi:10.1002/anie.201503890 (2015).
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 10797-10801
-
-
Emami, F.S.1
-
23
-
-
84981765197
-
Computer-assisted synthetic planning: The end of the beginning
-
Szymku, S., et al. Computer-assisted synthetic planning: The end of the beginning. Angew. Chem. Int. Ed. 55, 5904-5937, doi:10.1002/anie.201506101 (2016).
-
(2016)
Angew. Chem. Int. Ed.
, vol.55
, pp. 5904-5937
-
-
Szymku, S.1
-
24
-
-
85050579669
-
New directions for machine learning
-
Wilson, E. K. New directions for machine learning. Chem., Eng. News 4, 29-30 (2017).
-
(2017)
Chem., Eng. News
, vol.4
, pp. 29-30
-
-
Wilson, E.K.1
-
25
-
-
84893874008
-
-
Springer New York
-
James, G., Witten. D., Hastie, T., Tibshirani, R. An introduction to statistical learning with applications in R, 130 (Springer New York, 2013).
-
(2013)
An Introduction to Statistical Learning with Applications in R
, vol.130
-
-
James, G.1
Witten, D.2
Hastie, T.3
Tibshirani, R.4
-
26
-
-
34249753618
-
Support-vector networks
-
Cortes, C., Vapnik, V. Support-vector networks. Mach. Learn. 20, 273-297, doi:10.1007/BF00994018 (1995).
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
28
-
-
33748242731
-
Neural networks in chemistry
-
Gasteiger, J., Zupan, J. Neural networks in chemistry. Angew. Chem. Int. Ed. 32, 503-527, doi:10.1002/(ISSN)1521-3773 (1993).
-
(1993)
Angew. Chem. Int. Ed.
, vol.32
, pp. 503-527
-
-
Gasteiger, J.1
Zupan, J.2
-
29
-
-
33646430006
-
Extremely randomized trees
-
Geurts, P., Ernst, D., Wehenkel, L. Extremely randomized trees. Mach. Learn. 63, 3-42, doi:10.1007/s10994-006-6226-1 (2006).
-
(2006)
Mach. Learn.
, vol.63
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
30
-
-
0035478854
-
Random forests
-
Breiman, L. Random forests. Mach. Learn. 45, 5-32, doi:10.1023/A:1010933404324 (2001).
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
31
-
-
0003684449
-
-
Springer
-
Hastie, T., Tibshirani, R., Friedman, J. The elements of statistical learning, 587 (Springer, 2009).
-
(2009)
The Elements of Statistical Learning
, vol.587
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
33
-
-
33845379303
-
Atom pairs as molecular features in structure-activity studies: Definition and applications
-
Carhart, R. E., Smith, D. H., Venkataraghavan, R. J. Atom pairs as molecular features in structure-activity studies: Definition and applications. Chem. Inf. Model. 25, 64-73, doi:10.1021/ci00046a002 (1985).
-
(1985)
Chem. Inf. Model.
, vol.25
, pp. 64-73
-
-
Carhart, R.E.1
Smith, D.H.2
Venkataraghavan, R.J.3
-
34
-
-
84905364269
-
Organic chemistry as a language and the implications of chemical linguistics for structural and retrosynthetic analyses
-
Cadeddu, A., Wylie, E. K., Jurczak, J., Wampler-Doty, M., Grzybowski, B. A. Organic chemistry as a language and the implications of chemical linguistics for structural and retrosynthetic analyses. Angew. Chem. Int. Ed. 53, 8108-8112, doi:10.1002/anie.201403708 (2014).
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 8108-8112
-
-
Cadeddu, A.1
Wylie, E.K.2
Jurczak, J.3
Wampler-Doty, M.4
Grzybowski, B.A.5
-
35
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman, J., Hastie, T., Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Soft. 33, 1-22, doi:10.18637/jss.v033.i01 (2010).
-
(2010)
J. Stat. Soft.
, vol.33
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
36
-
-
68949140728
-
A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
-
Menze, B. H., et al. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 10, 213, doi:10.1186/1471-2105-10-213 (2009).
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 213
-
-
Menze, B.H.1
-
37
-
-
0028938112
-
Total synthesis of (+/)-FR-900482
-
Schkeryantz, J. M., Danishefsky, S. J. Total synthesis of (+/)-FR-900482. J. Am. Chem. Soc. 117, 4722-4723, doi:10.1021/ja00121a037 (1995).
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 4722-4723
-
-
Schkeryantz, J.M.1
Danishefsky, S.J.2
-
38
-
-
0038614445
-
Novel tunable CuX2-mediated cyclization reaction of cyclopropylideneacetic acids and esters for the facile synthesis of 4-halomethyl-2(5H)-furanones and 4-halo-5, 6-dihydro-2H-pyran-2-ones
-
Huang, X., Zhou, H. W. Novel tunable CuX2-mediated cyclization reaction of cyclopropylideneacetic acids and esters for the facile synthesis of 4-halomethyl-2(5H)-furanones and 4-halo-5, 6-dihydro-2H-pyran-2-ones. Org. Lett. 4, 4419-4422, doi:10.1021/ol026911q (2002).
-
(2002)
Org. Lett.
, vol.4
, pp. 4419-4422
-
-
Huang, X.1
Zhou, H.W.2
-
39
-
-
0001626504
-
Charge as a key component in reaction design-The invention of cationic cyclization reactions of importance in synthesis
-
Overman, L. E. Charge as a key component in reaction design-the invention of cationic cyclization reactions of importance in synthesis. Acc. Chem. Res. 25, 352-359, doi:10.1021/ar00020a005 (1992).
-
(1992)
Acc. Chem. Res.
, vol.25
, pp. 352-359
-
-
Overman, L.E.1
-
40
-
-
0030001543
-
The total synthesis of dynemicin A leading to development of a fully contained bioreductively activated enediyne prodrug
-
Shair, M. D., Yoon, T. Y., Mosny, K. K., Chou, T. C., Danishefsky, S. J. The total synthesis of dynemicin A leading to development of a fully contained bioreductively activated enediyne prodrug. J. Am. Chem. Soc. 118, 9509-9525, doi:10.1021/ja960040w (1996).
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 9509-9525
-
-
Shair, M.D.1
Yoon, T.Y.2
Mosny, K.K.3
Chou, T.C.4
Danishefsky, S.J.5
|