메뉴 건너뛰기




Volumn 14, Issue 1, 2013, Pages

A method to identify differential expression profiles of time-course gene data with Fourier transformation

Author keywords

[No Author keywords available]

Indexed keywords

DIFFERENTIAL EXPRESSIONS; FOURIER COEFFICIENTS; FOURIER TRANSFORMATIONS; GAUSSIAN PROCESS REGRESSION; GENE EXPRESSION PROFILES; MICROARRAY EXPRESSIONS; MODEL-BASED CLUSTERING; NONPARAMETRIC REPRESENTATION;

EID: 84885494902     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-14-310     Document Type: Article
Times cited : (13)

References (39)
  • 1
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • 10.1093/bioinformatics/bth283, 15130923
    • Bar-Joseph Z. Analyzing time series gene expression data. Bioinformatics 2004, 20(16):2493-2503. 10.1093/bioinformatics/bth283, 15130923.
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 2
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamin Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 1995, 57:289-300.
    • (1995) J R Statist Soc B , vol.57 , pp. 289-300
    • Benjamin, Y.1    Hochberg, Y.2
  • 4
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • 10.1101/gr.165101, 311075, 11435405
    • Thomas JG, Olson JM, Tapscott SJ, Zhao LP. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res 2001, 11:1227-1236. 10.1101/gr.165101, 311075, 11435405.
    • (2001) Genome Res , vol.11 , pp. 1227-1236
    • Thomas, J.G.1    Olson, J.M.2    Tapscott, S.J.3    Zhao, L.P.4
  • 7
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • 10.1073/pnas.091062498, 33173, 11309499
    • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001, 98:5116-5121. 10.1073/pnas.091062498, 33173, 11309499.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 8
    • 0037433040 scopus 로고    scopus 로고
    • Identifying differentially expressed genes using false discovery rate controlling procedures
    • 10.1093/bioinformatics/btf877, 12584122
    • Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003, 19(3):368-375. 10.1093/bioinformatics/btf877, 12584122.
    • (2003) Bioinformatics , vol.19 , Issue.3 , pp. 368-375
    • Reiner, A.1    Yekutieli, D.2    Benjamini, Y.3
  • 9
    • 1042304217 scopus 로고    scopus 로고
    • An empirical bayes adjustment to increase the sensitivity of detecting differentially expressed genes in microarray experiments
    • 10.1093/bioinformatics/btg396, 14734315
    • Datta S, Satten GA, Benos DJ, Xia J, Heslin MJ, Datta S. An empirical bayes adjustment to increase the sensitivity of detecting differentially expressed genes in microarray experiments. Bioinformatics 2004, 20:235-242. 10.1093/bioinformatics/btg396, 14734315.
    • (2004) Bioinformatics , vol.20 , pp. 235-242
    • Datta, S.1    Satten, G.A.2    Benos, D.J.3    Xia, J.4    Heslin, M.J.5    Datta, S.6
  • 10
    • 18744378860 scopus 로고    scopus 로고
    • Empirical Bayes screening of many p-values with applications to microarray studies
    • 10.1093/bioinformatics/bti301, 15691856
    • Datta S, Datta S. Empirical Bayes screening of many p-values with applications to microarray studies. Bioinformatics 2005, 21(9):1987-1994. 10.1093/bioinformatics/bti301, 15691856.
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 1987-1994
    • Datta, S.1    Datta, S.2
  • 11
    • 24644447890 scopus 로고    scopus 로고
    • CATS: clustering after transformation and smoothing
    • Serban N, Wasserman L. CATS: clustering after transformation and smoothing. J Am Stat Assoc 2005, 471:990-999.
    • (2005) J Am Stat Assoc , vol.471 , pp. 990-999
    • Serban, N.1    Wasserman, L.2
  • 12
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression data
    • Ernst J, Nau G, Bar-Joseph Z. Clustering short time series gene expression data. Bioinformatics 2005, 21:159-168.
    • (2005) Bioinformatics , vol.21 , pp. 159-168
    • Ernst, J.1    Nau, G.2    Bar-Joseph, Z.3
  • 13
    • 14044275098 scopus 로고    scopus 로고
    • Improved Fourier transform method for unsupervised cell-cycle regulated gene prediction
    • Murthy KRK, Hua LJ. Improved Fourier transform method for unsupervised cell-cycle regulated gene prediction. Proc IEEE Comp Sys Bioinformatics Conf Proceedings 2004, 194-203.
    • (2004) Proc IEEE Comp Sys Bioinformatics Conf Proceedings , pp. 194-203
    • Murthy, K.R.K.1    Hua, L.J.2
  • 14
    • 33746921310 scopus 로고    scopus 로고
    • Clustering periodic patterns of gene expression based on Fourier approximations
    • Kim B, Littell RC, Wu R. Clustering periodic patterns of gene expression based on Fourier approximations. Curr Genomics 2006, 7:197-203.
    • (2006) Curr Genomics , vol.7 , pp. 197-203
    • Kim, B.1    Littell, R.C.2    Wu, R.3
  • 15
    • 0037343132 scopus 로고    scopus 로고
    • A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription
    • 10.1093/bioinformatics/btg017, 12611801
    • Johansson D, Lindgren P, Berglund A. A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription. Bioinformatics 2003, 19:467-473. 10.1093/bioinformatics/btg017, 12611801.
    • (2003) Bioinformatics , vol.19 , pp. 467-473
    • Johansson, D.1    Lindgren, P.2    Berglund, A.3
  • 16
    • 4944252468 scopus 로고    scopus 로고
    • Using hidden Markov models to analyze gene expression time course data
    • Schliep A, Schonhuth A, Steinhoff C. Using hidden Markov models to analyze gene expression time course data. Bioinformatics 2003, 19(Suppl):i255-i263.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL
    • Schliep, A.1    Schonhuth, A.2    Steinhoff, C.3
  • 17
    • 38349101892 scopus 로고    scopus 로고
    • Clustering of change patterns using Fourier coefficients
    • 10.1093/bioinformatics/btm568, 18025003
    • Kim J, Kim H. Clustering of change patterns using Fourier coefficients. Bioinformatics 2008, 24:184-191. 10.1093/bioinformatics/btm568, 18025003.
    • (2008) Bioinformatics , vol.24 , pp. 184-191
    • Kim, J.1    Kim, H.2
  • 18
    • 0021644144 scopus 로고
    • Fitting straight lines to point patterns
    • Murtage C, Raftery AE. Fitting straight lines to point patterns. Pattern Recogn 1984, 17:479-483.
    • (1984) Pattern Recogn , vol.17 , pp. 479-483
    • Murtage, C.1    Raftery, A.E.2
  • 19
    • 22844453564 scopus 로고    scopus 로고
    • MCLUST: software for model-based cluster analysis
    • Fraley C, Raftery AE. MCLUST: software for model-based cluster analysis. J of Classification 1999, 16:297-306.
    • (1999) J of Classification , vol.16 , pp. 297-306
    • Fraley, C.1    Raftery, A.E.2
  • 20
    • 33750683623 scopus 로고    scopus 로고
    • Flexible temporal expression profile modelling using the Gaussian process
    • Yuan M. Flexible temporal expression profile modelling using the Gaussian process. Comput Stat Data Anal 2006, 51(3):1754-1764.
    • (2006) Comput Stat Data Anal , vol.51 , Issue.3 , pp. 1754-1764
    • Yuan, M.1
  • 21
    • 65549161909 scopus 로고    scopus 로고
    • Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data
    • 10.1093/bioinformatics/btp139, 2677737, 19289448
    • Kirk PDW, Stumpf MPH. Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data. Bioinformatics 2009, 25(10):1300-1306. 10.1093/bioinformatics/btp139, 2677737, 19289448.
    • (2009) Bioinformatics , vol.25 , Issue.10 , pp. 1300-1306
    • Kirk, P.D.W.1    Stumpf, M.P.H.2
  • 23
    • 49549105346 scopus 로고    scopus 로고
    • Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities
    • 10.1093/bioinformatics/btn278, 18689843
    • Gao P, Honkela A, Rattray M, Lawrence ND. Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities. Bioinformatics 2008, 24(16):i70-i75. 10.1093/bioinformatics/btn278, 18689843.
    • (2008) Bioinformatics , vol.24 , Issue.16
    • Gao, P.1    Honkela, A.2    Rattray, M.3    Lawrence, N.D.4
  • 24
    • 79956211692 scopus 로고    scopus 로고
    • A simple approach to ranking differentially expressed gene expression time course through Gaussian process regression
    • Kalaitzis AA, Lawrence ND. A simple approach to ranking differentially expressed gene expression time course through Gaussian process regression. BMC Bioinforma 2011, 12:180.
    • (2011) BMC Bioinforma , vol.12 , pp. 180
    • Kalaitzis, A.A.1    Lawrence, N.D.2
  • 25
    • 55449128330 scopus 로고    scopus 로고
    • BATS: a Bayesian user-friendly software for analyzing time series microarray experiments
    • Angelini C, Cutillo L, Canditiis D, Mutarelli M, Pensky M. BATS: a Bayesian user-friendly software for analyzing time series microarray experiments. BMC Bioinforma 2008, 9:415.
    • (2008) BMC Bioinforma , vol.9 , pp. 415
    • Angelini, C.1    Cutillo, L.2    Canditiis, D.3    Mutarelli, M.4    Pensky, M.5
  • 26
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccaromyces cerevisiae by microarray hybridization
    • 10.1091/mbc.9.12.3273, 25624, 9843569
    • Spellman PT, Sherlock G, Zhang MQ, Lyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast saccaromyces cerevisiae by microarray hybridization. Mol Biol Cell 1998, 9:3273-3297. 10.1091/mbc.9.12.3273, 25624, 9843569.
    • (1998) Mol Biol Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Lyer, V.R.4    Anders, K.5    Eisen, M.B.6    Brown, P.O.7    Botstein, D.8    Futcher, B.9
  • 27
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using mixed-effects models with B-splines
    • 10.1093/bioinformatics/btg014, 12611802
    • Luan Y, Li H. Clustering of time-course gene expression data using mixed-effects models with B-splines. Bioinformatics 2003, 19:474-482. 10.1093/bioinformatics/btg014, 12611802.
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 29
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccaromyces cerevisiae by microarray hybridization
    • Brown PO, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast saccaromyces cerevisiae by microarray hybridization. Mol Bio Cell 1998, 9:3273-3297.
    • (1998) Mol Bio Cell , vol.9 , pp. 3273-3297
    • Brown, P.O.1    Botstein, D.2    Futcher, B.3
  • 31
    • 0026342691 scopus 로고
    • A mutation in the yeast heat-shock factor gene causes temperature-sensitive defects in both mitochondrial protein import and the cell cycle
    • 360034, 2017170
    • Smith B, Yaffe M. A mutation in the yeast heat-shock factor gene causes temperature-sensitive defects in both mitochondrial protein import and the cell cycle. Mol Cell Biol 1991, 11:2647-2655. 360034, 2017170.
    • (1991) Mol Cell Biol , vol.11 , pp. 2647-2655
    • Smith, B.1    Yaffe, M.2
  • 32
  • 33
    • 0012333436 scopus 로고    scopus 로고
    • Test for change when the data are dependent
    • Kim J, Hart JD. Test for change when the data are dependent. J Time Series Anal 1998, 19(4):399-424.
    • (1998) J Time Series Anal , vol.19 , Issue.4 , pp. 399-424
    • Kim, J.1    Hart, J.D.2
  • 34
    • 21144482103 scopus 로고
    • Testing goodness-of-fit via order selection criteria
    • Eubank R, Hart JD. Testing goodness-of-fit via order selection criteria. Ann Stat 1992, 20(3):1412-1425.
    • (1992) Ann Stat , vol.20 , Issue.3 , pp. 1412-1425
    • Eubank, R.1    Hart, J.D.2
  • 35
    • 0000520732 scopus 로고
    • A central limit theorem for m-dependent random variables with unbounded m
    • Berk KN. A central limit theorem for m-dependent random variables with unbounded m. Anal Prob 1973, 1973(1):352-354.
    • (1973) Anal Prob , vol.1973 , Issue.1 , pp. 352-354
    • Berk, K.N.1
  • 36
    • 0001197675 scopus 로고
    • The empirical distribution of Fourier coefficients
    • Freedman D, Lane D. The empirical distribution of Fourier coefficients. Anal stat 1980, 8(6):1244-1251.
    • (1980) Anal stat , vol.8 , Issue.6 , pp. 1244-1251
    • Freedman, D.1    Lane, D.2
  • 37
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield JD, Raftery AE. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993, 49:803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 38
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert L. Comparing partitions. J. of Classification 1985, 2:193-218.
    • (1985) J. of Classification , vol.2 , pp. 193-218
    • Hubert, L.1
  • 39
    • 0023453329 scopus 로고
    • Silhouettes: graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw PJ. Silhouettes: graphical aid to the interpretation and validation of cluster analysis. J Comp App Math 1987, 20:53-65.
    • (1987) J Comp App Math , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.