메뉴 건너뛰기




Volumn 31, Issue 1-2, 2017, Pages 49-64

Zero-resource machine translation by multimodal encoder–decoder network with multimedia pivot

Author keywords

Machine translation; Multimedia pivot; Multimodal embedding; Neural network; Zero resource learning

Indexed keywords

BENCHMARKING; COMPUTATIONAL LINGUISTICS; COMPUTER AIDED LANGUAGE TRANSLATION; DECODING; NETWORK CODING; NEURAL NETWORKS; SEMANTICS; SIGNAL ENCODING; TRANSLATION (LANGUAGES);

EID: 85019896469     PISSN: 09226567     EISSN: 15730573     Source Type: Journal    
DOI: 10.1007/s10590-017-9197-z     Document Type: Article
Times cited : (67)

References (39)
  • 1
    • 84881061488 scopus 로고    scopus 로고
    • Learning bilingual lexicons using the visual similarity of labeled web images. In: Proc. IJCAI
    • Bergsma S, Van Durme B (2011) Learning bilingual lexicons using the visual similarity of labeled web images. In: Proc. IJCAI, pp 1764–1769
    • (2011) pp 1764–1769
    • Bergsma, S.1    Van Durme, B.2
  • 3
    • 85024134433 scopus 로고    scopus 로고
    • Multi30K: multilingual English–German image descriptions. In: Proceedings of the 5th ACL Workshop on Vision and Language
    • Elliott D, Frank S, Sima’an K, Specia L (2016) Multi30K: multilingual English–German image descriptions. In: Proceedings of the 5th ACL Workshop on Vision and Language, pp 70–74
    • (2016) pp 70–74
    • Elliott, D.1    Frank, S.2    Sima’an, K.3    Specia, L.4
  • 4
    • 85024095465 scopus 로고    scopus 로고
    • Zero-resource translation with multi-lingual neural machine translation. In: Proc. EMNLP
    • Firat O, Sankaran B, Al-Onaizan Y, Vural FTY, Cho K (2016) Zero-resource translation with multi-lingual neural machine translation. In: Proc. EMNLP, pp 268–277
    • (2016) pp 268–277
    • Firat, O.1    Sankaran, B.2    Al-Onaizan, Y.3    Vural, F.T.Y.4    Cho, K.5
  • 5
    • 84898958665 scopus 로고    scopus 로고
    • Devise: a deep visual-semantic embedding model. In: Proc. NIPS
    • Frome A, Corrado G, Shlens J (2013) Devise: a deep visual-semantic embedding model. In: Proc. NIPS, pp 1–11
    • (2013) pp 1–11
    • Frome, A.1    Corrado, G.2    Shlens, J.3
  • 6
    • 84959908078 scopus 로고    scopus 로고
    • Image-mediated learning for zero-shot cross-lingual document retrieval. In: Proc. EMNLP
    • Funaki R, Nakayama H (2015) Image-mediated learning for zero-shot cross-lingual document retrieval. In: Proc. EMNLP, pp 585–590
    • (2015) pp 585–590
    • Funaki, R.1    Nakayama, H.2
  • 7
    • 38049183286 scopus 로고    scopus 로고
    • The IAPR TC-12 benchmark: a new evaluation resource for visual information systems. In: Proc. LREC
    • Grübinger M, Clough P, Müller H, Deselaers T (2006) The IAPR TC-12 benchmark: a new evaluation resource for visual information systems. In: Proc. LREC, pp 13–23
    • (2006) pp 13–23
    • Grübinger, M.1    Clough, P.2    Müller, H.3    Deselaers, T.4
  • 8
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: an overview with application to learning methods
    • Hardoon DR, Szedmak S, Shawe-taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16(12):2639–2664
    • (2004) Neural Comput , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-taylor, J.3
  • 9
    • 85012034079 scopus 로고    scopus 로고
    • Multimodal pivots for image caption translation. In: Proc. ACL
    • Hitschler J, Riezler S (2016) Multimodal pivots for image caption translation. In: Proc. ACL, pp 2399–2409
    • (2016) pp 2399–2409
    • Hitschler, J.1    Riezler, S.2
  • 11
    • 0000107975 scopus 로고
    • Relations between two sets of variants
    • Hotelling H (1936) Relations between two sets of variants. Biometrika 28:321–377
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 15
    • 84959920494 scopus 로고    scopus 로고
    • Visual bilingual lexicon induction with transferred ConvNet features. In: Proc. EMNLP
    • Kiela D, Vulic I, Clark S (2015) Visual bilingual lexicon induction with transferred ConvNet features. In: Proc. EMNLP, pp 148–158
    • (2015) pp 148–158
    • Kiela, D.1    Vulic, I.2    Clark, S.3
  • 18
    • 44949230930 scopus 로고    scopus 로고
    • Europarl: a parallel corpus for statistical machine translation
    • Koehn P (2005) Europarl: a parallel corpus for statistical machine translation. Proc Mach Transl Summit 11:79–86
    • (2005) Proc Mach Transl Summit , vol.11 , pp. 79-86
    • Koehn, P.1
  • 20
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks. In: Proc. NIPS
    • Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Proc. NIPS, pp 1097–1105
    • (2012) pp 1097–1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 21
    • 33644584883 scopus 로고    scopus 로고
    • Orange: a method for evaluating automatic evaluation metrics for machine translation. In: Proc. COLING
    • Lin CY, Och FJ (2004) Orange: a method for evaluating automatic evaluation metrics for machine translation. In: Proc. COLING, pp 501–507
    • (2004) pp 501–507
    • Lin, C.Y.1    Och, F.J.2
  • 23
    • 85024125298 scopus 로고    scopus 로고
    • Issues in cross-language retrieval from document image collections. In: Proceedings of symposium on document image understanding technology
    • Oard D (1999) Issues in cross-language retrieval from document image collections. In: Proceedings of symposium on document image understanding technology, pp 229–234
    • (1999) pp 229–234
    • Oard, D.1
  • 24
    • 85133336275 scopus 로고    scopus 로고
    • BLEU: a method for automatic evaluation of machine translation. In: Proc. ACL
    • Papineni K, Roukos S, Ward T, Zhu Wj (2002) BLEU: a method for automatic evaluation of machine translation. In: Proc. ACL, pp 311–318
    • (2002) pp 311–318
    • Papineni, K.1    Roukos, S.2    Ward, T.3    Wj, Z.4
  • 25
    • 84994097145 scopus 로고    scopus 로고
    • Bridge correlational neural networks for multilingual multimodal representation learning. In: Proc. NAACL-HLT
    • Rajendran J, Khapra MM, Chandar S, Ravindran B (2016) Bridge correlational neural networks for multilingual multimodal representation learning. In: Proc. NAACL-HLT, pp 171–181
    • (2016) pp 171–181
    • Rajendran, J.1    Khapra, M.M.2    Chandar, S.3    Ravindran, B.4
  • 26
    • 84901488599 scopus 로고    scopus 로고
    • Automatic parallel fragment extraction from noisy data. In: Proc. NAACL
    • Riesa J, Marcu D (2012) Automatic parallel fragment extraction from noisy data. In: Proc. NAACL, pp 538–542
    • (2012) pp 538–542
    • Riesa, J.1    Marcu, D.2
  • 27
    • 85024094852 scopus 로고    scopus 로고
    • A correlational encoder decoder architecture for pivot based sequence generation
    • Proc
    • Saha A, Khapra MM, Chandar S, Rajendran J, Cho K (2016) A correlational encoder decoder architecture for pivot based sequence generation. In: Proc. COLING
    • (2016) COLING
    • Saha, A.1    Khapra, M.M.2    Chandar, S.3    Rajendran, J.4    Cho, K.5
  • 29
    • 84906930522 scopus 로고    scopus 로고
    • Learning grounded meaning representations with autoencoders. In: Proc. ACL
    • Silberer C, Lapata M (2014) Learning grounded meaning representations with autoencoders. In: Proc. ACL, pp 721–732
    • (2014) pp 721–732
    • Silberer, C.1    Lapata, M.2
  • 31
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks. In: Proc. NIPS
    • Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Proc. NIPS, pp 3104–3112
    • (2014) pp 3104–3112
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 32
    • 84857511536 scopus 로고    scopus 로고
    • The sentence-aligned European Patent Corpus. In: Proc. EAMT
    • Taeger W (2011) The sentence-aligned European Patent Corpus. In: Proc. EAMT, pp 177–184
    • (2011) pp 177–184
    • Taeger, W.1
  • 33
    • 79958167293 scopus 로고    scopus 로고
    • Improving the multilingual user experience of wikipedia using cross-language name search. In: Proc. NAACL
    • Udupa R, Khapra MM (2010) Improving the multilingual user experience of wikipedia using cross-language name search. In: Proc. NAACL, pp 492–500
    • (2010) pp 492–500
    • Udupa, R.1    Khapra, M.M.2
  • 34
    • 80053425615 scopus 로고    scopus 로고
    • Large scale parallel document mining for machine translation. In: Proc. COLING
    • Uszkoreit J, Ponte J, Popat AC, Dubiner M (2010) Large scale parallel document mining for machine translation. In: Proc. COLING, pp 1101–1109
    • (2010) pp 1101–1109
    • Uszkoreit, J.1    Ponte, J.2    Popat, A.C.3    Dubiner, M.4
  • 36
    • 85012025842 scopus 로고    scopus 로고
    • Multi-modal representations for improved bilingual lexicon learning. In: Proc. ACL
    • Vuli I, Kiela D, Clark S, Moens MF (2016) Multi-modal representations for improved bilingual lexicon learning. In: Proc. ACL, pp 188–194
    • (2016) pp 188–194
    • Vuli, I.1    Kiela, D.2    Clark, S.3    Moens, M.F.4
  • 37
    • 54249155932 scopus 로고    scopus 로고
    • Pivot language approach for phrase-based statistical machine translation
    • Wu H, Wang H (2007) Pivot language approach for phrase-based statistical machine translation. Mach Transl 21(3):165–181
    • (2007) Mach Transl , vol.21 , Issue.3 , pp. 165-181
    • Wu, H.1    Wang, H.2
  • 38
    • 84857522664 scopus 로고    scopus 로고
    • Revisiting pivot language approach for machine translation. In: Proc. IJCNLP-ACL
    • Wu H, Wang H (2009) Revisiting pivot language approach for machine translation. In: Proc. IJCNLP-ACL, pp 154–162
    • (2009) pp 154–162
    • Wu, H.1    Wang, H.2
  • 39
    • 84906494296 scopus 로고    scopus 로고
    • From Image descriptions to visual denotations: new similarity metrics for semantic inference over event descriptions
    • Young P, Lai A, Hodosh M, Hockenmaier J (2014) From Image descriptions to visual denotations: new similarity metrics for semantic inference over event descriptions. Trans ACL 2:67–78
    • (2014) Trans ACL , vol.2 , pp. 67-78
    • Young, P.1    Lai, A.2    Hodosh, M.3    Hockenmaier, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.