메뉴 건너뛰기




Volumn 94, Issue , 2017, Pages 55-61

Using line segments to train multi-stream stacked autoencoders for image classification

Author keywords

Deep geometric representation; Image classification; Line segments; Multi stream deep learning; Representation learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); DEEP LEARNING; GEOMETRY; IMAGE SEGMENTATION; LEARNING SYSTEMS; OBJECT RECOGNITION;

EID: 85019835456     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2017.05.025     Document Type: Article
Times cited : (15)

References (22)
  • 2
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: closing the gap to human-level performance in face verification
    • Taigman, Y., Yang, M., Ranzato, M., Wolf, L., Deepface: closing the gap to human-level performance in face verification. 2014, 1701–1708.
    • (2014) , pp. 1701-1708
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 3
    • 84911443783 scopus 로고    scopus 로고
    • Panda: pose aligned networks for deep attribute modeling
    • Zhang, N., Paluri, M., Ranzato, M., Darrell, T., Bourdev, L., Panda: pose aligned networks for deep attribute modeling. 2014, 1637–1644.
    • (2014) , pp. 1637-1644
    • Zhang, N.1    Paluri, M.2    Ranzato, M.3    Darrell, T.4    Bourdev, L.5
  • 5
    • 84911438024 scopus 로고    scopus 로고
    • Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition
    • Wu, D., Shao, L., Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition. 2014, 724–731.
    • (2014) , pp. 724-731
    • Wu, D.1    Shao, L.2
  • 6
    • 84866707640 scopus 로고    scopus 로고
    • The shape Boltzmann machine: a strong model of object shape
    • Eslami, S.M.A., Heess, N., Williams, C.K.I., Winn, J., The shape Boltzmann machine: a strong model of object shape. 2012, 406–413.
    • (2012) , pp. 406-413
    • Eslami, S.M.A.1    Heess, N.2    Williams, C.K.I.3    Winn, J.4
  • 7
    • 84903276771 scopus 로고    scopus 로고
    • Learning and representing object shape through an array of orientation columns
    • Wei, H., Li, Q., Dong, Z., Learning and representing object shape through an array of orientation columns. IEEE Trans. Neural Netw. Learn. Syst. 25:7 (2014), 1346–1358.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.7 , pp. 1346-1358
    • Wei, H.1    Li, Q.2    Dong, Z.3
  • 8
  • 9
    • 34548041446 scopus 로고    scopus 로고
    • Real-time line detection through an improved hough transform voting scheme
    • Fernandes, L.A.F., Oliveira, M.M., Real-time line detection through an improved hough transform voting scheme. Pattern Recognit. 41:1 (2008), 299–314.
    • (2008) Pattern Recognit. , vol.41 , Issue.1 , pp. 299-314
    • Fernandes, L.A.F.1    Oliveira, M.M.2
  • 10
    • 27744567885 scopus 로고    scopus 로고
    • A bayesian approach to the hough transform for line detection
    • Bonci, A., Leo, T., Longhi, S., A bayesian approach to the hough transform for line detection. IEEE Trans. Syst. Man Cybern. Part A 35:6 (2005), 945–955.
    • (2005) IEEE Trans. Syst. Man Cybern. Part A , vol.35 , Issue.6 , pp. 945-955
    • Bonci, A.1    Leo, T.2    Longhi, S.3
  • 12
    • 84965122839 scopus 로고
    • Convolutional networks for images, speech, and time series
    • Lecun, Y., Bengio, Y., Convolutional networks for images, speech, and time series. 1995.
    • (1995)
    • Lecun, Y.1    Bengio, Y.2
  • 14
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • Simonyan, K., Zisserman, A., Two-stream convolutional networks for action recognition in videos. Adv. Neural. Inf. Process Syst. 1:4 (2014), 568–576.
    • (2014) Adv. Neural. Inf. Process Syst. , vol.1 , Issue.4 , pp. 568-576
    • Simonyan, K.1    Zisserman, A.2
  • 15
    • 0034292258 scopus 로고    scopus 로고
    • Shape similarity measure based on correspondence of visual parts
    • Latecki, L.J., Lakamper, R., Shape similarity measure based on correspondence of visual parts. IEEE Trans. Pattern Anal. Mach. Intell. 22:10 (2000), 1185–1190.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.10 , pp. 1185-1190
    • Latecki, L.J.1    Lakamper, R.2
  • 16
    • 84960434066 scopus 로고    scopus 로고
    • A genetic-algorithm-based explicit description of object contour and its ability to facilitate recognition.
    • Wei, H., Tang, X.S., A genetic-algorithm-based explicit description of object contour and its ability to facilitate recognition. Cybern. IEEE Trans. 45:11 (2014), 2558–2571.
    • (2014) Cybern. IEEE Trans. , vol.45 , Issue.11 , pp. 2558-2571
    • Wei, H.1    Tang, X.S.2
  • 20
    • 85019896006 scopus 로고    scopus 로고
    • Learning informative features from restricted Boltzmann machines
    • Tomczak, J.M., Learning informative features from restricted Boltzmann machines. Neural Process. Lett., 2015, 1–16.
    • (2015) Neural Process. Lett. , pp. 1-16
    • Tomczak, J.M.1
  • 22
    • 80052885179 scopus 로고    scopus 로고
    • High-dimensional signature compression for large-scale image classification
    • Sanchez, J., Perronnin, F., High-dimensional signature compression for large-scale image classification., 42(7), 2011, 1665–1672.
    • (2011) , vol.42 , Issue.7 , pp. 1665-1672
    • Sanchez, J.1    Perronnin, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.