-
1
-
-
84875574597
-
-
Aviris NW Indiana's Indian Pines, Data set Available Online
-
Aviris NW Indiana's Indian Pines, 1992. Data set Available Online: ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C (original files) and ftp://ftp.ecn.purdue.edu/biehl/PC MultiSpec/ThyFiles.zip (ground truth).
-
(1992)
-
-
-
3
-
-
0031106245
-
Feature extraction for multisource data classification with artificial neural networks
-
Benediktsson, J.A., Sveinsson, J.R., 1997. Feature extraction for multisource data classification with artificial neural networks. International Journal of Remote Sensing 18, 727-740.
-
(1997)
International Journal of Remote Sensing
, vol.18
, pp. 727-740
-
-
Benediktsson, J.A.1
Sveinsson, J.R.2
-
4
-
-
33749657648
-
-
Campilho, A., Kamel, M. (Eds.), ICIAR 2006 LNCS, 4142
-
Borges, J.S., Bioucas-Dias, J.M., Marcaļ, A.R.S., 2006. Fast sparse multinomial regression applied to hyperspectral data. In: Campilho, A., Kamel, M. (Eds.), ICIAR 2006, LNCS, 4142., pp. 700-709.
-
(2006)
Fast sparse multinomial regression applied to hyperspectral data
, pp. 700-709
-
-
Borges, J.S.1
Bioucas-Dias, J.M.2
Marcaļ, A.R.S.3
-
5
-
-
0026966646
-
Training algorithm for optimal margin classifiers
-
Haussler, D. (Ed.), ACM Press, Pittsburgh, PA
-
Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. Training algorithm for optimal margin classifiers. In: Haussler, D. (Ed.), Proceedings of the 5th Annual Workshop on Computational Learning Theory. ACM Press, Pittsburgh, PA, pp. 144-152.
-
(1992)
Proceedings of the 5th Annual Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
6
-
-
33750012146
-
Gene selection in cancer classification using sparse logistic regression with Bayesian regularisation
-
Cawley, G.C., Talbot, N.L.C., 2006. Gene selection in cancer classification using sparse logistic regression with Bayesian regularisation. Bioinformatics 22, 2348-2355.
-
(2006)
Bioinformatics
, vol.22
, pp. 2348-2355
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
7
-
-
34547976903
-
Sparse multinomial logistic regression via Bayesian L1 regularisation
-
Schölkopf, B., Platt, J.C., Hoffmann, T. (Eds.), MIT Press, Cambridge, MA, USA
-
Cawley, G.C., Talbot, N.L.C., Girolami, M., 2007. Sparse multinomial logistic regression via Bayesian L1 regularisation. In: Schölkopf, B., Platt, J.C., Hoffmann, T. (Eds.), Advances in Neural Information Processing Systems, vol. 19. MIT Press, Cambridge, MA, USA.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
-
-
Cawley, G.C.1
Talbot, N.L.C.2
Girolami, M.3
-
9
-
-
33750584880
-
Logistic regression for feature selection and soft classification of remote sensing data
-
Cheng, Q., Varshney, P.K., Arora, M.K., 2006. Logistic regression for feature selection and soft classification of remote sensing data. IEEE Geoscience and Remote Sensing Letters 3, 491-494.
-
(2006)
IEEE Geoscience and Remote Sensing Letters
, vol.3
, pp. 491-494
-
-
Cheng, Q.1
Varshney, P.K.2
Arora, M.K.3
-
10
-
-
12844275025
-
A semilabeled-sample-driven bagging technique for illposed classification problems
-
Chi, M., Bruzzone, L., 2005. A semilabeled-sample-driven bagging technique for illposed classification problems. IEEE Geosciences and Remote Sensing Letters 2, 69-73.
-
(2005)
IEEE Geosciences and Remote Sensing Letters
, vol.2
, pp. 69-73
-
-
Chi, M.1
Bruzzone, L.2
-
11
-
-
34249753618
-
Support-vector networks
-
Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning 20, 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
84942213019
-
The best two independent measurements are not the two best
-
Cover, T.M., 1974. The best two independent measurements are not the two best. IEEE Transactions on Systems, Man, and Cybernetics 4, 116-117.
-
(1974)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.4
, pp. 116-117
-
-
Cover, T.M.1
-
13
-
-
0003798635
-
-
Cambridge University Press, Cambridge, UK
-
Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines and other Kernel-based Learning Methods. Cambridge University Press, Cambridge, UK.
-
(2000)
An Introduction to Support Vector Machines and other Kernel-based Learning Methods
-
-
Cristianini, N.1
Shawe-Taylor, J.2
-
14
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich, T.G., 1998. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10, 1895-1923.
-
(1998)
Neural Computation
, vol.10
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
17
-
-
3042661357
-
Thematic map comparison: evaluating the statistical significance of differences in classification accuracy
-
Foody, G.M., 2004. Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing 70, 627-633.
-
(2004)
Photogrammetric Engineering and Remote Sensing
, vol.70
, pp. 627-633
-
-
Foody, G.M.1
-
18
-
-
4544272407
-
Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification
-
Foody, G.M., Mathur, A., 2004. Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sensing of Environment 93, 107-117.
-
(2004)
Remote Sensing of Environment
, vol.93
, pp. 107-117
-
-
Foody, G.M.1
Mathur, A.2
-
19
-
-
0003498504
-
-
seventh edition. Academic Press, Oxford
-
Gradshteyn, I.S., Ryzhic, I.M., 2007. Table of Integrals, Series and Products, seventh edition. Academic Press, Oxford.
-
(2007)
Table of Integrals, Series and Products
-
-
Gradshteyn, I.S.1
Ryzhic, I.M.2
-
20
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene selection for cancer classification using support vector machines. Machine Learning 46, 389-422.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
21
-
-
76749092270
-
The WEKA data mining software: an update
-
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H., 2009. The WEKA data mining software: an update. SIGKDD Explorations 11, 10-18.
-
(2009)
SIGKDD Explorations
, vol.11
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
22
-
-
0003684449
-
-
Springer, New York, USA
-
Hastie, T., Tibshirani, R., Friedman, J., 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, USA.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
23
-
-
0031078007
-
Feature selection: evaluation, application, and small sample performance
-
Jain, A., Zongker, D., 1997. Feature selection: evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 153-158.
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, pp. 153-158
-
-
Jain, A.1
Zongker, D.2
-
24
-
-
0036324671
-
The role of feature selection in artificial neural network applications
-
Kavzoglu, T., Mather, P.M., 2002. The role of feature selection in artificial neural network applications. International Journal of Remote Sensing 23, 2787-2803.
-
(2002)
International Journal of Remote Sensing
, vol.23
, pp. 2787-2803
-
-
Kavzoglu, T.1
Mather, P.M.2
-
25
-
-
0003250435
-
Single-layer learning revisited: a stepwise procedure for building and training neural network
-
NATO ASI, Springer-Verlag, Berlin
-
Knerr, S., Personnaz, L., Dreyfus, G., 1990. Single-layer learning revisited: a stepwise procedure for building and training neural network. In: Neurocomputing: Algorithms, Architectures and Applications. NATO ASI, Springer-Verlag, Berlin.
-
(1990)
In: Neurocomputing: Algorithms, Architectures and Applications
-
-
Knerr, S.1
Personnaz, L.2
Dreyfus, G.3
-
26
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R., John, G.H., 1997. Wrappers for feature subset selection. Artificial Intelligence 97, 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
27
-
-
0242712296
-
Adaptive feature selection for hyperspectral data analysis using a binary hierarchical classifier and tabu search
-
Toulouse, France, July 21-25
-
Korycinski, D., Crawford, M.M., Barnes, J.W., Ghosh, J., 2003. Adaptive feature selection for hyperspectral data analysis using a binary hierarchical classifier and tabu search. In: Proceedings of the 2003 International Geoscience and Remote Sensing Symposium, Toulouse, France, July 21-25, pp. 297-299.
-
(2003)
Proceedings of the 2003 International Geoscience and Remote Sensing Symposium
, pp. 297-299
-
-
Korycinski, D.1
Crawford, M.M.2
Barnes, J.W.3
Ghosh, J.4
-
28
-
-
21244437589
-
Sparse multinomial logistic regression: fast algorithms and generalization bounds
-
Krishnapuram, B., Carin, L., Figueiredo, M.A.T., Hartemink, A.J., 2005. Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 957-968.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, pp. 957-968
-
-
Krishnapuram, B.1
Carin, L.2
Figueiredo, M.A.T.3
Hartemink, A.J.4
-
30
-
-
30344453044
-
Evolving feature selection
-
Liu, H., 2005. Evolving feature selection. IEEE Intelligent Systems 20, 64-76.
-
(2005)
IEEE Intelligent Systems
, vol.20
, pp. 64-76
-
-
Liu, H.1
-
31
-
-
26844513469
-
Overfitting in wrapper-based feature subset selection: the harder you try the worse it gets
-
Max Bramer, Frans Coenen, Tony Allen (Eds.), Springer, London
-
Loughrey, J., Cunningham, P., 2004. Overfitting in wrapper-based feature subset selection: the harder you try the worse it gets. In: Max Bramer, Frans Coenen, Tony Allen (Eds.), Research and Development in Intelligent Systems, vol. XXI. Springer, London, pp. 33-43.
-
(2004)
Research and Development in Intelligent Systems
, vol.21
, pp. 33-43
-
-
Loughrey, J.1
Cunningham, P.2
-
32
-
-
85040872860
-
-
John Wiley and Sons, Chichester, UK
-
Mather, P.M., Koch, M., 2011. Computer Processing of Remotely-Sensed Images: An Introduction, fourth edition. John Wiley and Sons, Chichester, UK.
-
(2011)
Computer Processing of Remotely-Sensed Images: An Introduction, fourth edition
-
-
Mather, P.M.1
Koch, M.2
-
33
-
-
0003425662
-
Support vector machines: training and applications
-
A.I. Memo No. 1602, CBCL paper No. 144
-
Osuna, E.E., Freund, R., Girosi, F., 1997. Support vector machines: training and applications. A.I. Memo No. 1602, CBCL paper No. 144, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, ftp://publications.ai.mit.edu/aipublications/pdf/AIM-1602.pdf.
-
(1997)
Artificial Intelligence Laboratory, Massachusetts Institute of Technology
-
-
Osuna, E.E.1
Freund, R.2
Girosi, F.3
-
35
-
-
4444230479
-
Assessment of the effectiveness of support vector machines for hyperspectral data
-
Pal, M., Mather, P.M., 2004. Assessment of the effectiveness of support vector machines for hyperspectral data. Future Generation Computer Systems 20, 1215-1225.
-
(2004)
Future Generation Computer Systems
, vol.20
, pp. 1215-1225
-
-
Pal, M.1
Mather, P.M.2
-
36
-
-
13644256120
-
Support vector machines for classification in remote sensing
-
Pal, M., Mather, P.M., 2005. Support vector machines for classification in remote sensing. International Journal of Remote Sensing 26, 1007-1011.
-
(2005)
International Journal of Remote Sensing
, vol.26
, pp. 1007-1011
-
-
Pal, M.1
Mather, P.M.2
-
37
-
-
33747086525
-
Some issues in the classification of remote sensing data: a case study with DIAS hyperspectral data
-
Pal, M., Mather, P.M., 2006. Some issues in the classification of remote sensing data: a case study with DIAS hyperspectral data. International Journal of Remote Sensing 27, 2895-2916.
-
(2006)
International Journal of Remote Sensing
, vol.27
, pp. 2895-2916
-
-
Pal, M.1
Mather, P.M.2
-
39
-
-
33747119337
-
Support vector machine-based feature selection for land cover classification: a case study with DAIS hyperspectral data
-
Pal, M., 2006. Support vector machine-based feature selection for land cover classification: a case study with DAIS hyperspectral data. International Journal of Remote Sensing 27, 2877-2894.
-
(2006)
International Journal of Remote Sensing
, vol.27
, pp. 2877-2894
-
-
Pal, M.1
-
42
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys, Y., Inza, I., Larranaga, P., 2007. A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507-2517.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
43
-
-
0035391615
-
A new search algorithm for feature selection in hyperspectral remote sensing images
-
Serpico, S.B., Bruzzone, L., 2001. A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Transactions on Geoscience and Remote Sensing 39, 1360-1367.
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, pp. 1360-1367
-
-
Serpico, S.B.1
Bruzzone, L.2
-
44
-
-
0345327592
-
A simple and efficient algorithm for gene selection using sparse logistic regression
-
Shevade, S.K., Keerthi, S.S., 2003. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19, 2246-2253.
-
(2003)
Bioinformatics
, vol.19
, pp. 2246-2253
-
-
Shevade, S.K.1
Keerthi, S.S.2
-
45
-
-
84910153030
-
Preprocessing for the airborne imaging spectrometer DAIS 7915
-
Strobl, P., Richter, R., Lehmann, F., Mueller, A., Zhukov, B., Oertel, D., 1996. Preprocessing for the airborne imaging spectrometer DAIS 7915. SPIE Proceedings 2758, 375-382.
-
(1996)
SPIE Proceedings
, vol.2758
, pp. 375-382
-
-
Strobl, P.1
Richter, R.2
Lehmann, F.3
Mueller, A.4
Zhukov, B.5
Oertel, D.6
-
46
-
-
85041003041
-
A new band selection algorithm for hyperspectral data based on fractal dimension
-
Remote Sensing and Spatial Information Sciences Part B7, Beijing
-
Su, H., Sheng, Y., Du, P., 2008. A new band selection algorithm for hyperspectral data based on fractal dimension. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII. Part B7, Beijing, pp. 279-284.
-
(2008)
The International Archives of the Photogrammetry
, vol.37
, pp. 279-284
-
-
Su, H.1
Sheng, Y.2
Du, P.3
-
48
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
Vapnik, W.N., Chervonenkis, A.Y., 1971. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 17, 264-280.
-
(1971)
Theory of Probability and its Applications
, vol.17
, pp. 264-280
-
-
Vapnik, W.N.1
Chervonenkis, A.Y.2
-
50
-
-
0000673452
-
Bayesian regularization and pruning using a Laplace prior
-
Williams, P.M., 1995. Bayesian regularization and pruning using a Laplace prior. Neural Computation 7, 117-143.
-
(1995)
Neural Computation
, vol.7
, pp. 117-143
-
-
Williams, P.M.1
-
51
-
-
64149108290
-
Dynamic learning of SMLR for feature selection and classification of hyperspectral data
-
Zhong, P., Zhang, P., Wang, R., 2008. Dynamic learning of SMLR for feature selection and classification of hyperspectral data. IEEE Geoscience and Remote Sensing Letters 5, 280-284.
-
(2008)
IEEE Geoscience and Remote Sensing Letters
, vol.5
, pp. 280-284
-
-
Zhong, P.1
Zhang, P.2
Wang, R.3
|