메뉴 건너뛰기




Volumn 14, Issue 1, 2012, Pages 214-220

Multinomial logistic regression-based feature selection for hyperspectral data

Author keywords

Classification accuracy; Feature selection; Multinomial logistic regression; Support vector machines

Indexed keywords

ACCURACY ASSESSMENT; AVIRIS; DATA SET; REGRESSION ANALYSIS; SPECTRAL ANALYSIS;

EID: 84864409930     PISSN: 15698432     EISSN: 1872826X     Source Type: Journal    
DOI: 10.1016/j.jag.2011.09.014     Document Type: Article
Times cited : (54)

References (51)
  • 1
    • 84875574597 scopus 로고
    • Aviris NW Indiana's Indian Pines, Data set Available Online
    • Aviris NW Indiana's Indian Pines, 1992. Data set Available Online: ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C (original files) and ftp://ftp.ecn.purdue.edu/biehl/PC MultiSpec/ThyFiles.zip (ground truth).
    • (1992)
  • 3
    • 0031106245 scopus 로고    scopus 로고
    • Feature extraction for multisource data classification with artificial neural networks
    • Benediktsson, J.A., Sveinsson, J.R., 1997. Feature extraction for multisource data classification with artificial neural networks. International Journal of Remote Sensing 18, 727-740.
    • (1997) International Journal of Remote Sensing , vol.18 , pp. 727-740
    • Benediktsson, J.A.1    Sveinsson, J.R.2
  • 6
    • 33750012146 scopus 로고    scopus 로고
    • Gene selection in cancer classification using sparse logistic regression with Bayesian regularisation
    • Cawley, G.C., Talbot, N.L.C., 2006. Gene selection in cancer classification using sparse logistic regression with Bayesian regularisation. Bioinformatics 22, 2348-2355.
    • (2006) Bioinformatics , vol.22 , pp. 2348-2355
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 7
    • 34547976903 scopus 로고    scopus 로고
    • Sparse multinomial logistic regression via Bayesian L1 regularisation
    • Schölkopf, B., Platt, J.C., Hoffmann, T. (Eds.), MIT Press, Cambridge, MA, USA
    • Cawley, G.C., Talbot, N.L.C., Girolami, M., 2007. Sparse multinomial logistic regression via Bayesian L1 regularisation. In: Schölkopf, B., Platt, J.C., Hoffmann, T. (Eds.), Advances in Neural Information Processing Systems, vol. 19. MIT Press, Cambridge, MA, USA.
    • (2007) Advances in Neural Information Processing Systems , vol.19
    • Cawley, G.C.1    Talbot, N.L.C.2    Girolami, M.3
  • 9
    • 33750584880 scopus 로고    scopus 로고
    • Logistic regression for feature selection and soft classification of remote sensing data
    • Cheng, Q., Varshney, P.K., Arora, M.K., 2006. Logistic regression for feature selection and soft classification of remote sensing data. IEEE Geoscience and Remote Sensing Letters 3, 491-494.
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , pp. 491-494
    • Cheng, Q.1    Varshney, P.K.2    Arora, M.K.3
  • 10
    • 12844275025 scopus 로고    scopus 로고
    • A semilabeled-sample-driven bagging technique for illposed classification problems
    • Chi, M., Bruzzone, L., 2005. A semilabeled-sample-driven bagging technique for illposed classification problems. IEEE Geosciences and Remote Sensing Letters 2, 69-73.
    • (2005) IEEE Geosciences and Remote Sensing Letters , vol.2 , pp. 69-73
    • Chi, M.1    Bruzzone, L.2
  • 11
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T.G., 1998. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10, 1895-1923.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 17
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: evaluating the statistical significance of differences in classification accuracy
    • Foody, G.M., 2004. Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing 70, 627-633.
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 18
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification
    • Foody, G.M., Mathur, A., 2004. Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sensing of Environment 93, 107-117.
    • (2004) Remote Sensing of Environment , vol.93 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 20
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene selection for cancer classification using support vector machines. Machine Learning 46, 389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 24
    • 0036324671 scopus 로고    scopus 로고
    • The role of feature selection in artificial neural network applications
    • Kavzoglu, T., Mather, P.M., 2002. The role of feature selection in artificial neural network applications. International Journal of Remote Sensing 23, 2787-2803.
    • (2002) International Journal of Remote Sensing , vol.23 , pp. 2787-2803
    • Kavzoglu, T.1    Mather, P.M.2
  • 25
    • 0003250435 scopus 로고
    • Single-layer learning revisited: a stepwise procedure for building and training neural network
    • NATO ASI, Springer-Verlag, Berlin
    • Knerr, S., Personnaz, L., Dreyfus, G., 1990. Single-layer learning revisited: a stepwise procedure for building and training neural network. In: Neurocomputing: Algorithms, Architectures and Applications. NATO ASI, Springer-Verlag, Berlin.
    • (1990) In: Neurocomputing: Algorithms, Architectures and Applications
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 26
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., John, G.H., 1997. Wrappers for feature subset selection. Artificial Intelligence 97, 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 30
    • 30344453044 scopus 로고    scopus 로고
    • Evolving feature selection
    • Liu, H., 2005. Evolving feature selection. IEEE Intelligent Systems 20, 64-76.
    • (2005) IEEE Intelligent Systems , vol.20 , pp. 64-76
    • Liu, H.1
  • 31
    • 26844513469 scopus 로고    scopus 로고
    • Overfitting in wrapper-based feature subset selection: the harder you try the worse it gets
    • Max Bramer, Frans Coenen, Tony Allen (Eds.), Springer, London
    • Loughrey, J., Cunningham, P., 2004. Overfitting in wrapper-based feature subset selection: the harder you try the worse it gets. In: Max Bramer, Frans Coenen, Tony Allen (Eds.), Research and Development in Intelligent Systems, vol. XXI. Springer, London, pp. 33-43.
    • (2004) Research and Development in Intelligent Systems , vol.21 , pp. 33-43
    • Loughrey, J.1    Cunningham, P.2
  • 35
    • 4444230479 scopus 로고    scopus 로고
    • Assessment of the effectiveness of support vector machines for hyperspectral data
    • Pal, M., Mather, P.M., 2004. Assessment of the effectiveness of support vector machines for hyperspectral data. Future Generation Computer Systems 20, 1215-1225.
    • (2004) Future Generation Computer Systems , vol.20 , pp. 1215-1225
    • Pal, M.1    Mather, P.M.2
  • 36
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • Pal, M., Mather, P.M., 2005. Support vector machines for classification in remote sensing. International Journal of Remote Sensing 26, 1007-1011.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 1007-1011
    • Pal, M.1    Mather, P.M.2
  • 37
    • 33747086525 scopus 로고    scopus 로고
    • Some issues in the classification of remote sensing data: a case study with DIAS hyperspectral data
    • Pal, M., Mather, P.M., 2006. Some issues in the classification of remote sensing data: a case study with DIAS hyperspectral data. International Journal of Remote Sensing 27, 2895-2916.
    • (2006) International Journal of Remote Sensing , vol.27 , pp. 2895-2916
    • Pal, M.1    Mather, P.M.2
  • 39
    • 33747119337 scopus 로고    scopus 로고
    • Support vector machine-based feature selection for land cover classification: a case study with DAIS hyperspectral data
    • Pal, M., 2006. Support vector machine-based feature selection for land cover classification: a case study with DAIS hyperspectral data. International Journal of Remote Sensing 27, 2877-2894.
    • (2006) International Journal of Remote Sensing , vol.27 , pp. 2877-2894
    • Pal, M.1
  • 42
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., Inza, I., Larranaga, P., 2007. A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 43
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • Serpico, S.B., Bruzzone, L., 2001. A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Transactions on Geoscience and Remote Sensing 39, 1360-1367.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , pp. 1360-1367
    • Serpico, S.B.1    Bruzzone, L.2
  • 44
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • Shevade, S.K., Keerthi, S.S., 2003. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19, 2246-2253.
    • (2003) Bioinformatics , vol.19 , pp. 2246-2253
    • Shevade, S.K.1    Keerthi, S.S.2
  • 46
    • 85041003041 scopus 로고    scopus 로고
    • A new band selection algorithm for hyperspectral data based on fractal dimension
    • Remote Sensing and Spatial Information Sciences Part B7, Beijing
    • Su, H., Sheng, Y., Du, P., 2008. A new band selection algorithm for hyperspectral data based on fractal dimension. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII. Part B7, Beijing, pp. 279-284.
    • (2008) The International Archives of the Photogrammetry , vol.37 , pp. 279-284
    • Su, H.1    Sheng, Y.2    Du, P.3
  • 48
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik, W.N., Chervonenkis, A.Y., 1971. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 17, 264-280.
    • (1971) Theory of Probability and its Applications , vol.17 , pp. 264-280
    • Vapnik, W.N.1    Chervonenkis, A.Y.2
  • 50
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Williams, P.M., 1995. Bayesian regularization and pruning using a Laplace prior. Neural Computation 7, 117-143.
    • (1995) Neural Computation , vol.7 , pp. 117-143
    • Williams, P.M.1
  • 51
    • 64149108290 scopus 로고    scopus 로고
    • Dynamic learning of SMLR for feature selection and classification of hyperspectral data
    • Zhong, P., Zhang, P., Wang, R., 2008. Dynamic learning of SMLR for feature selection and classification of hyperspectral data. IEEE Geoscience and Remote Sensing Letters 5, 280-284.
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , pp. 280-284
    • Zhong, P.1    Zhang, P.2    Wang, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.