메뉴 건너뛰기




Volumn 91, Issue 11, 2017, Pages

Dengue virus activates the AMP kinase-mTOR axis to stimulate a proviral lipophagy

Author keywords

Autophagy; Lipid metabolism

Indexed keywords

5' ADENOSINE MONOPHOSPHATE ACTIVATED KINASE ALPHA 1; ADENYLATE KINASE; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; S6 KINASE; SMALL INTERFERING RNA; TUBERIN; UNCLASSIFIED DRUG; MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1; MULTIPROTEIN COMPLEX; TARGET OF RAPAMYCIN KINASE; TUMOR SUPPRESSOR PROTEIN;

EID: 85019254450     PISSN: 0022538X     EISSN: 10985514     Source Type: Journal    
DOI: 10.1128/JVI.02020-16     Document Type: Article
Times cited : (97)

References (72)
  • 2
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G, Marino G, Levine B. 2010. Autophagy and the integrated stress response. Mol Cell 40:280-293. https://doi.org/10.1016/j.molcel.2010.09.023.
    • (2010) Mol Cell , vol.40 , pp. 280-293
    • Kroemer, G.1    Marino, G.2    Levine, B.3
  • 3
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. 2008. Autophagy fights disease through cellular self-digestion. Nature 451:1069-1075. https://doi.org/10.1038/nature06639.
    • (2008) Nature , vol.451 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 4
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine B, Mizushima N, Virgin HW. 2011. Autophagy in immunity and inflammation. Nature 469:323-335. https://doi.org/10.1038/nature09782.
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 5
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • Deretic V, Saitoh T, Akira S. 2013. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722-737. https://doi.org/10.1038/nri3532.
    • (2013) Nat Rev Immunol , vol.13 , pp. 722-737
    • Deretic, V.1    Saitoh, T.2    Akira, S.3
  • 6
    • 79951910694 scopus 로고    scopus 로고
    • Autophagy in immunity and cell-autonomous defense against intracellular microbes
    • Deretic V. 2011. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 240:92-104. https://doi.org/10.1111/j.1600-065X.2010.00995.x.
    • (2011) Immunol Rev , vol.240 , pp. 92-104
    • Deretic, V.1
  • 7
    • 67649607465 scopus 로고    scopus 로고
    • Autophagy, immunity, and microbial adaptations
    • Deretic V, Levine B. 2009. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5:527-549. https://doi.org/10.1016/j.chom.2009.05.016.
    • (2009) Cell Host Microbe , vol.5 , pp. 527-549
    • Deretic, V.1    Levine, B.2
  • 8
    • 84856020006 scopus 로고    scopus 로고
    • Manipulation or capitulation: virus interactions with autophagy
    • Jordan TX, Randall G. 2012. Manipulation or capitulation: virus interactions with autophagy. Microbes Infect 14:126-139. https://doi.org/10.1016/j.micinf.2011.09.007.
    • (2012) Microbes Infect , vol.14 , pp. 126-139
    • Jordan, T.X.1    Randall, G.2
  • 11
    • 84911994029 scopus 로고    scopus 로고
    • Coordinated regulation of autophagy and apoptosis determines endothelial cell fate during Dengue virus type 2 infection
    • Huang J, Li Y, Qi Y, Zhang Y, Zhang L, Wang Z, Zhang X, Gui L. 2014. Coordinated regulation of autophagy and apoptosis determines endothelial cell fate during Dengue virus type 2 infection. Mol Cell Biochem 397:157-165. https://doi.org/10.1007/s11010-014-2183-3.
    • (2014) Mol Cell Biochem , vol.397 , pp. 157-165
    • Huang, J.1    Li, Y.2    Qi, Y.3    Zhang, Y.4    Zhang, L.5    Wang, Z.6    Zhang, X.7    Gui, L.8
  • 14
    • 67449086380 scopus 로고    scopus 로고
    • A role for autophagolysosomes in Dengue virus 3 production in HepG2 cells
    • Khakpoor A, Panyasrivanit M, Wikan N, Smith DR. 2009. A role for autophagolysosomes in Dengue virus 3 production in HepG2 cells. J Gen Virol 90:1093-1103. https://doi.org/10.1099/vir.0.007914-0.
    • (2009) J Gen Virol , vol.90 , pp. 1093-1103
    • Khakpoor, A.1    Panyasrivanit, M.2    Wikan, N.3    Smith, D.R.4
  • 15
    • 65249100786 scopus 로고    scopus 로고
    • Linking dengue virus entry and translation/replication through amphisomes
    • Panyasrivanit M, Khakpoor A, Wikan N, Smith DR. 2009. Linking dengue virus entry and translation/replication through amphisomes. Autophagy 5:434-435. https://doi.org/10.4161/auto.5.3.7925.
    • (2009) Autophagy , vol.5 , pp. 434-435
    • Panyasrivanit, M.1    Khakpoor, A.2    Wikan, N.3    Smith, D.R.4
  • 16
    • 62749134544 scopus 로고    scopus 로고
    • Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes
    • Panyasrivanit M, Khakpoor A, Wikan N, Smith DR. 2009. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J Gen Virol 90:448-456. https://doi.org/10.1099/vir.0.005355-0.
    • (2009) J Gen Virol , vol.90 , pp. 448-456
    • Panyasrivanit, M.1    Khakpoor, A.2    Wikan, N.3    Smith, D.R.4
  • 17
    • 78349237370 scopus 로고    scopus 로고
    • Dengue virus-induced autophagy regulates lipid metabolism
    • Heaton NS, Randall G. 2010. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8:422-432. https://doi.org/10.1016/j.chom.2010.10.006.
    • (2010) Cell Host Microbe , vol.8 , pp. 422-432
    • Heaton, N.S.1    Randall, G.2
  • 21
    • 84901773763 scopus 로고    scopus 로고
    • Genome-wide screen identifies signaling pathways that regulate autophagy during Caenorhabditis elegans development
    • Guo B, Huang X, Zhang P, Qi L, Liang Q, Zhang X, Huang J, Fang B, Hou W, Han J, Zhang H. 2014. Genome-wide screen identifies signaling pathways that regulate autophagy during Caenorhabditis elegans development. EMBO Rep 15:705-713.
    • (2014) EMBO Rep , vol.15 , pp. 705-713
    • Guo, B.1    Huang, X.2    Zhang, P.3    Qi, L.4    Liang, Q.5    Zhang, X.6    Huang, J.7    Fang, B.8    Hou, W.9    Han, J.10    Zhang, H.11
  • 23
    • 84878533962 scopus 로고    scopus 로고
    • MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability
    • O'Rourke EJ, Ruvkun G. 2013. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15:668-676. https://doi.org/10.1038/ncb2741.
    • (2013) Nat Cell Biol , vol.15 , pp. 668-676
    • O'Rourke, E.J.1    Ruvkun, G.2
  • 25
    • 84891745585 scopus 로고    scopus 로고
    • Autophagy regulation by nutrient signaling
    • Russell RC, Yuan HX, Guan KL. 2014. Autophagy regulation by nutrient signaling. Cell Res 24:42-57. https://doi.org/10.1038/cr.2013.166.
    • (2014) Cell Res , vol.24 , pp. 42-57
    • Russell, R.C.1    Yuan, H.X.2    Guan, K.L.3
  • 26
    • 77950501014 scopus 로고    scopus 로고
    • mTOR regulation of autophagy
    • Jung CH, Ro SH, Cao J, Otto NM, Kim DH. 2010. mTOR regulation of autophagy. FEBS Lett 584:1287-1295. https://doi.org/10.1016/j.febslet.2010.01.017.
    • (2010) FEBS Lett , vol.584 , pp. 1287-1295
    • Jung, C.H.1    Ro, S.H.2    Cao, J.3    Otto, N.M.4    Kim, D.H.5
  • 27
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13: 132-141. https://doi.org/10.1038/ncb2152.
    • (2011) Nat Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 28
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274-293. https://doi.org/10.1016/j.cell.2012.03.017.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 29
    • 78649348967 scopus 로고    scopus 로고
    • Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
    • Sengupta S, Peterson TR, Sabatini DM. 2010. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310-322. https://doi.org/10.1016/j.molcel.2010.09.026.
    • (2010) Mol Cell , vol.40 , pp. 310-322
    • Sengupta, S.1    Peterson, T.R.2    Sabatini, D.M.3
  • 30
    • 79952104568 scopus 로고    scopus 로고
    • mTOR couples cellular nutrient sensing to organismal metabolic homeostasis
    • Howell JJ, Manning BD. 2011. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 22:94-102. https://doi.org/10.1016/j.tem.2010.12.003.
    • (2011) Trends Endocrinol Metab , vol.22 , pp. 94-102
    • Howell, J.J.1    Manning, B.D.2
  • 34
    • 80052385397 scopus 로고    scopus 로고
    • AMP-activated protein kinase: also regulated by ADP?
    • Hardie DG, Carling D, Gamblin SJ. 2011. AMP-activated protein kinase: also regulated by ADP? Trends Biochem Sci 36:470-477. https://doi.org/10.1016/j.tibs.2011.06.004.
    • (2011) Trends Biochem Sci , vol.36 , pp. 470-477
    • Hardie, D.G.1    Carling, D.2    Gamblin, S.J.3
  • 35
    • 33748747706 scopus 로고    scopus 로고
    • Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro
    • Momcilovic M, Hong SP, Carlson M. 2006. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 281:25336-25343. https://doi.org/10.1074/jbc.M604399200.
    • (2006) J Biol Chem , vol.281 , pp. 25336-25343
    • Momcilovic, M.1    Hong, S.P.2    Carlson, M.3
  • 36
    • 20444468520 scopus 로고    scopus 로고
    • Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase alpha as Snf1-activating kinases in yeast
    • Hong SP, Momcilovic M, Carlson M. 2005. Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase alpha as Snf1-activating kinases in yeast. J Biol Chem 280:21804-21809. https://doi.org/10.1074/jbc.M501887200.
    • (2005) J Biol Chem , vol.280 , pp. 21804-21809
    • Hong, S.P.1    Momcilovic, M.2    Carlson, M.3
  • 37
    • 23044437445 scopus 로고    scopus 로고
    • Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells
    • Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D. 2005. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21-33. https://doi.org/10.1016/j.cmet.2005.06.005.
    • (2005) Cell Metab , vol.2 , pp. 21-33
    • Woods, A.1    Dickerson, K.2    Heath, R.3    Hong, S.P.4    Momcilovic, M.5    Johnstone, S.R.6    Carlson, M.7    Carling, D.8
  • 38
    • 23044432463 scopus 로고    scopus 로고
    • Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase
    • Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG. 2005. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9-19. https://doi.org/10.1016/j.cmet.2005.05.009.
    • (2005) Cell Metab , vol.2 , pp. 9-19
    • Hawley, S.A.1    Pan, D.A.2    Mustard, K.J.3    Ross, L.4    Bain, J.5    Edelman, A.M.6    Frenguelli, B.G.7    Hardie, D.G.8
  • 39
    • 23844471263 scopus 로고    scopus 로고
    • The Ca2+/calmodulin-dependent protein kinase kinases are AMPactivated protein kinase kinases
    • Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA. 2005 The Ca2+/calmodulin-dependent protein kinase kinases are AMPactivated protein kinase kinases. J Biol Chem 280:29060-29066. https://doi.org/10.1074/jbc.M503824200.
    • (2005) J Biol Chem , vol.280 , pp. 29060-29066
    • Hurley, R.L.1    Anderson, K.A.2    Franzone, J.M.3    Kemp, B.E.4    Means, A.R.5    Witters, L.A.6
  • 40
    • 1542618348 scopus 로고    scopus 로고
    • The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
    • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC. 2004. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101:3329-3335. https://doi.org/10.1073/pnas.0308061100.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 3329-3335
    • Shaw, R.J.1    Kosmatka, M.2    Bardeesy, N.3    Hurley, R.L.4    Witters, L.A.5    DePinho, R.A.6    Cantley, L.C.7
  • 41
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan KL. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577-590. https://doi.org/10.1016/S0092-8674(03)00929-2.
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 42
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • Inoki K, Li Y, Xu T, Guan KL. 2003. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829-1834. https://doi.org/10.1101/gad.1110003.
    • (2003) Genes Dev , vol.17 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3    Guan, K.L.4
  • 43
    • 4444276510 scopus 로고    scopus 로고
    • Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity
    • Li Y, Inoki K, Guan KL. 2004. Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Mol Cell Biol 24:7965-7975. https://doi.org/10.1128/MCB.24.18.7965-7975.2004.
    • (2004) Mol Cell Biol , vol.24 , pp. 7965-7975
    • Li, Y.1    Inoki, K.2    Guan, K.L.3
  • 44
    • 33744536177 scopus 로고    scopus 로고
    • Measurements of TSC2 GAP activity toward Rheb
    • Li Y, Inoki K, Vikis H, Guan KL. 2006. Measurements of TSC2 GAP activity toward Rheb. Methods Enzymol 407:46-54. https://doi.org/10.1016/S0076-6879(05)07005-9.
    • (2006) Methods Enzymol , vol.407 , pp. 46-54
    • Li, Y.1    Inoki, K.2    Vikis, H.3    Guan, K.L.4
  • 45
    • 18044381192 scopus 로고    scopus 로고
    • Rheb binds and regulates the mTOR kinase
    • Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. 2005. Rheb binds and regulates the mTOR kinase. Curr Biol 15:702-713. https://doi.org/10.1016/j.cub.2005.02.053.
    • (2005) Curr Biol , vol.15 , pp. 702-713
    • Long, X.1    Lin, Y.2    Ortiz-Vega, S.3    Yonezawa, K.4    Avruch, J.5
  • 46
    • 0037178786 scopus 로고    scopus 로고
    • mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-175. https://doi.org/10.1016/S0092-8674(02)00808-5.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1    Sarbassov, D.D.2    Ali, S.M.3    King, J.E.4    Latek, R.R.5    Erdjument-Bromage, H.6    Tempst, P.7    Sabatini, D.M.8
  • 49
    • 78149476877 scopus 로고    scopus 로고
    • The association of AMPK with ULK1 regulates autophagy
    • Lee JW, Park S, Takahashi Y, Wang HG. 2010. The association of AMPK with ULK1 regulates autophagy. PLoS One 5:e15394. https://doi.org/10.1371/journal.pone.0015394.
    • (2010) PLoS One , vol.5
    • Lee, J.W.1    Park, S.2    Takahashi, Y.3    Wang, H.G.4
  • 50
    • 84872586081 scopus 로고    scopus 로고
    • Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
    • Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q, Guan KL. 2013. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152:290-303. https://doi.org/10.1016/j.cell.2012.12.016.
    • (2013) Cell , vol.152 , pp. 290-303
    • Kim, J.1    Kim, Y.C.2    Fang, C.3    Russell, R.C.4    Kim, J.H.5    Fan, W.6    Liu, R.7    Zhong, Q.8    Guan, K.L.9
  • 51
    • 84865301815 scopus 로고    scopus 로고
    • Lipids at the interface of virus-host interactions
    • Chukkapalli V, Heaton NS, Randall G. 2012. Lipids at the interface of virus-host interactions. Curr Opin Microbiol 15:512-518. https://doi.org/10.1016/j.mib.2012.05.013.
    • (2012) Curr Opin Microbiol , vol.15 , pp. 512-518
    • Chukkapalli, V.1    Heaton, N.S.2    Randall, G.3
  • 53
    • 0029910018 scopus 로고    scopus 로고
    • Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase
    • Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG. 1996. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271:27879-27887. https://doi.org/10.1074/jbc.271.44.27879.
    • (1996) J Biol Chem , vol.271 , pp. 27879-27887
    • Hawley, S.A.1    Davison, M.2    Woods, A.3    Davies, S.P.4    Beri, R.K.5    Carling, D.6    Hardie, D.G.7
  • 54
    • 0027979626 scopus 로고
    • Activation of rat liver AMP-activated protein kinase by kinase kinase in a purified, reconstituted system. Effects of AMP and AMP analogues
    • Weekes J, Hawley SA, Corton J, Shugar D, Hardie DG. 1994. Activation of rat liver AMP-activated protein kinase by kinase kinase in a purified, reconstituted system. Effects of AMP and AMP analogues. Eur J Biochem 219:751-757.
    • (1994) Eur J Biochem , vol.219 , pp. 751-757
    • Weekes, J.1    Hawley, S.A.2    Corton, J.3    Shugar, D.4    Hardie, D.G.5
  • 55
    • 0024839973 scopus 로고
    • Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMPdependent protein kinase, studied using a specific and sensitive peptide assay
    • Davies SP, Carling D, Hardie DG. 1989. Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMPdependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem 186:123-128. https://doi.org/10.1111/j.1432-1033.1989.tb15185.x.
    • (1989) Eur J Biochem , vol.186 , pp. 123-128
    • Davies, S.P.1    Carling, D.2    Hardie, D.G.3
  • 56
    • 0032539664 scopus 로고    scopus 로고
    • RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4EBP1
    • Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. 1998. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4EBP1. Proc Natl Acad Sci U S A 95:1432-1437. https://doi.org/10.1073/pnas.95.4.1432.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 1432-1437
    • Burnett, P.E.1    Barrow, R.K.2    Cohen, N.A.3    Snyder, S.H.4    Sabatini, D.M.5
  • 57
    • 84055178474 scopus 로고    scopus 로고
    • Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks
    • Magnuson B, Ekim B, Fingar DC. 2012. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 441:1-21. https://doi.org/10.1042/BJ20110892.
    • (2012) Biochem J , vol.441 , pp. 1-21
    • Magnuson, B.1    Ekim, B.2    Fingar, D.C.3
  • 58
    • 84861220033 scopus 로고    scopus 로고
    • AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis
    • Moser TS, Schieffer D, Cherry S. 2012. AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog 8:e1002661. https://doi.org/10.1371/journal.ppat.1002661.
    • (2012) PLoS Pathog , vol.8
    • Moser, T.S.1    Schieffer, D.2    Cherry, S.3
  • 60
    • 70350405142 scopus 로고    scopus 로고
    • SIRT1 regulates Tat-induced HIV-1 transactivation through activating AMP-activated protein kinase
    • Zhang HS, Wu MR. 2009. SIRT1 regulates Tat-induced HIV-1 transactivation through activating AMP-activated protein kinase. Virus Res 146: 51-57. https://doi.org/10.1016/j.virusres.2009.08.005.
    • (2009) Virus Res , vol.146 , pp. 51-57
    • Zhang, H.S.1    Wu, M.R.2
  • 61
    • 77954666136 scopus 로고    scopus 로고
    • A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics
    • Moser TS, Jones RG, Thompson CB, Coyne CB, Cherry S. 2010. A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics. PLoS Pathog 6:e1000954. https://doi.org/10.1371/journal.ppat.1000954.
    • (2010) PLoS Pathog , vol.6
    • Moser, T.S.1    Jones, R.G.2    Thompson, C.B.3    Coyne, C.B.4    Cherry, S.5
  • 62
    • 84873280040 scopus 로고    scopus 로고
    • The p17 nonstructural protein of avian reovirus triggers autophagy enhancing virus replication via activation of phosphatase and tensin deleted on chromosome 10 (PTEN) and AMP-activated protein kinase (AMPK), as well as dsRNAdependent protein kinase (PKR)/eIF2alpha signaling pathways
    • Chi PI, Huang WR, Lai IH, Cheng CY, Liu HJ. 2013. The p17 nonstructural protein of avian reovirus triggers autophagy enhancing virus replication via activation of phosphatase and tensin deleted on chromosome 10 (PTEN) and AMP-activated protein kinase (AMPK), as well as dsRNAdependent protein kinase (PKR)/eIF2alpha signaling pathways. J Biol Chem 288:3571-3584. https://doi.org/10.1074/jbc.M112.390245.
    • (2013) J Biol Chem , vol.288 , pp. 3571-3584
    • Chi, P.I.1    Huang, W.R.2    Lai, I.H.3    Cheng, C.Y.4    Liu, H.J.5
  • 63
    • 69249229790 scopus 로고    scopus 로고
    • Simian virus 40 small T antigen activates AMPK and triggers autophagy to protect cancer cells from nutrient deprivation
    • Kumar SH, Rangarajan A. 2009. Simian virus 40 small T antigen activates AMPK and triggers autophagy to protect cancer cells from nutrient deprivation. J Virol 83:8565-8574. https://doi.org/10.1128/JVI.00603-09.
    • (2009) J Virol , vol.83 , pp. 8565-8574
    • Kumar, S.H.1    Rangarajan, A.2
  • 64
    • 84857471383 scopus 로고    scopus 로고
    • HCMV targets the metabolic stress response through activation of AMPK whose activity is important for viral replication
    • McArdle J, Moorman NJ, Munger J. 2012. HCMV targets the metabolic stress response through activation of AMPK whose activity is important for viral replication. PLoS Pathog 8:e1002502. https://doi.org/10.1371/journal.ppat.1002502.
    • (2012) PLoS Pathog , vol.8
    • McArdle, J.1    Moorman, N.J.2    Munger, J.3
  • 65
    • 84874420024 scopus 로고    scopus 로고
    • Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-beta signaling is required for rotavirus replication
    • Crawford SE, Hyser JM, Utama B, Estes MK. 2012. Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-beta signaling is required for rotavirus replication. Proc Natl Acad Sci U S A 109:E3405-E3413. https://doi.org/10.1073/pnas.1216539109.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. E3405-E3413
    • Crawford, S.E.1    Hyser, J.M.2    Utama, B.3    Estes, M.K.4
  • 66
    • 84991070140 scopus 로고    scopus 로고
    • A systems survey of progressive host-cell reorganization during rotavirus infection
    • Green VA, Pelkmans L. 2016. A systems survey of progressive host-cell reorganization during rotavirus infection. Cell Host Microbe 20:107-120. https://doi.org/10.1016/j.chom.2016.06.005.
    • (2016) Cell Host Microbe , vol.20 , pp. 107-120
    • Green, V.A.1    Pelkmans, L.2
  • 67
    • 84872749486 scopus 로고    scopus 로고
    • Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway
    • Pena J, Harris E. 2012. Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway. PLoS One 7:e38202. https://doi.org/10.1371/journal.pone.0038202.
    • (2012) PLoS One , vol.7
    • Pena, J.1    Harris, E.2
  • 68
    • 84901296162 scopus 로고    scopus 로고
    • Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication
    • Tang WC, Lin RJ, Liao CL, Lin YL. 2014. Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J Virol 88:6793-6804. https://doi.org/10.1128/JVI.00045-14.
    • (2014) J Virol , vol.88 , pp. 6793-6804
    • Tang, W.C.1    Lin, R.J.2    Liao, C.L.3    Lin, Y.L.4
  • 70
    • 77958100661 scopus 로고    scopus 로고
    • Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis
    • Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ, Kuhn RJ, Randall G. 2010. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A 107:17345-17350. https://doi.org/10.1073/pnas.1010811107.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 17345-17350
    • Heaton, N.S.1    Perera, R.2    Berger, K.L.3    Khadka, S.4    Lacount, D.J.5    Kuhn, R.J.6    Randall, G.7
  • 72
    • 0037422607 scopus 로고    scopus 로고
    • Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs
    • Randall G, Grakoui A, Rice CM. 2003. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci U S A 100:235-240. https://doi.org/10.1073/pnas.0235524100.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 235-240
    • Randall, G.1    Grakoui, A.2    Rice, C.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.