-
2
-
-
85006694626
-
-
arXiv preprint:1512.03012
-
A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint:1512.03012, 2015.
-
(2015)
Shapenet: An Information-rich 3d Model Repository
-
-
Chang, A.X.1
Funkhouser, T.2
Guibas, L.3
Hanrahan, P.4
Huang, Q.5
Li, Z.6
Savarese, S.7
Savva, M.8
Song, S.9
Su, H.10
-
3
-
-
84990058312
-
-
arXiv preprint:1604.00449
-
C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-r2n2: An unified approach for single and multi-view 3d object reconstruction. arXiv preprint:1604.00449, 2016.
-
(2016)
3d-r2n2: An Unified Approach for Single and Multi-view 3d Object Reconstruction
-
-
Choy, C.B.1
Xu, D.2
Gwak, J.3
Chen, K.4
Savarese, S.5
-
5
-
-
84989317394
-
-
preprint:1603.08575
-
S. Eslami, N. Heess, T. Weber, Y. Tassa, K. Kavukcuoglu, and G. E. Hinton. Attend, infer, repeat: Fast scene understanding with generative models. preprint:1603.08575, 2016.
-
(2016)
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
-
-
Eslami, S.1
Heess, N.2
Weber, T.3
Tassa, Y.4
Kavukcuoglu, K.5
Hinton, G.E.6
-
6
-
-
85018886361
-
-
arXiv preprint:1604.08772
-
K. Gregor, F. Besse, D. Jimenez Rezende, I. Danihelka, and D. Wierstra. Towards conceptual compression. arXiv preprint:1604.08772, 2016.
-
(2016)
Towards Conceptual Compression
-
-
Gregor, K.1
Besse, F.2
Jimenez Rezende, D.3
Danihelka, I.4
Wierstra, D.5
-
7
-
-
84983208884
-
Draw: A recurrent neural network for image generation
-
K. Gregor, I. Danihelka, A. Graves, D. Jimenez Rezende, and D. Wierstra. Draw: A recurrent neural network for image generation. In ICML, 2015.
-
(2015)
ICML
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Jimenez Rezende, D.4
Wierstra, D.5
-
10
-
-
85018899821
-
-
arXiv preprint: 1610.07584
-
W. Jiajun, Z. Chengkai, X. Tianfan, F. William T., and J. Tenenbaum. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. arXiv preprint: 1610.07584, 2016.
-
(2016)
Learning a Probabilistic Latent Space of Object Shapes Via 3d Generative-adversarial Modeling
-
-
Jiajun, W.1
Chengkai, Z.2
Tianfan, X.3
William, T.F.4
Tenenbaum, J.5
-
11
-
-
85018874192
-
-
arXiv preprint:1603.05106
-
D. Jimenez Rezende, S. Mohamed, I. Danihelka, K. Gregor, and D. Wierstra. One-shot generalization in deep generative models. arXiv preprint:1603.05106, 2016.
-
(2016)
One-shot Generalization in Deep Generative Models
-
-
Jimenez Rezende, D.1
Mohamed, S.2
Danihelka, I.3
Gregor, K.4
Wierstra, D.5
-
12
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
D. Jimenez Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
-
(2014)
ICML
-
-
Jimenez Rezende, D.1
Mohamed, S.2
Wierstra, D.3
-
13
-
-
0033225865
-
An introduction to variational methods for graphical models
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine learning, 37(2):183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
15
-
-
85083952489
-
Auto-encoding variational bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
16
-
-
84973883277
-
Deep generative vision as approximate Bayesian computation
-
T. Kulkarni, I. Yildirim, P. Kohli, W. Freiwald, and J. B. Tenenbaum. Deep generative vision as approximate bayesian computation. In NIPS 2014 ABC Workshop, 2014.
-
(2014)
NIPS 2014 ABC Workshop
-
-
Kulkarni, T.1
Yildirim, I.2
Kohli, P.3
Freiwald, W.4
Tenenbaum, J.B.5
-
19
-
-
84906345204
-
Opendr: An approximate differentiable renderer
-
Springer
-
M. M. Loper and M. J. Black. Opendr: An approximate differentiable renderer. In Computer Vision-ECCV 2014, pages 154-169. Springer, 2014.
-
(2014)
Computer Vision-ECCV 2014
, pp. 154-169
-
-
Loper, M.M.1
Black, M.J.2
-
20
-
-
84898942632
-
Approximate Bayesian image interpretation using generative probabilistic graphics programs
-
V. Mansinghka, T. D. Kulkarni, Y. N. Perov, and J. Tenenbaum. Approximate bayesian image interpretation using generative probabilistic graphics programs. In NIPS, pages 1520-1528, 2013.
-
(2013)
NIPS
, pp. 1520-1528
-
-
Mansinghka, V.1
Kulkarni, T.D.2
Perov, Y.N.3
Tenenbaum, J.4
-
23
-
-
84866636410
-
Bayesian geometric modeling of indoor scenes
-
IEEE
-
L. D. Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hartley, and K. Barnard. Bayesian geometric modeling of indoor scenes. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2719-2726. IEEE, 2012.
-
(2012)
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
, pp. 2719-2726
-
-
Pero, L.D.1
Bowdish, J.2
Fried, D.3
Kermgard, B.4
Hartley, E.5
Barnard, K.6
-
25
-
-
44349136909
-
Perceptual multistability predicted by search model for Bayesian decisions
-
R. Sundareswara and P. R. Schrater. Perceptual multistability predicted by search model for bayesian decisions. Journal of Vision, 8(5):12-12, 2008.
-
(2008)
Journal of Vision
, vol.8
, Issue.5
, pp. 12
-
-
Sundareswara, R.1
Schrater, P.R.2
-
26
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229-256, 1992.
-
(1992)
Machine Learning
, vol.8
, Issue.3-4
, pp. 229-256
-
-
Williams, R.J.1
-
27
-
-
85162505566
-
Nonstandard interpretations of probabilistic programs for efficient inference
-
D. Wingate, N. Goodman, A. Stuhlmueller, and J. M. Siskind. Nonstandard interpretations of probabilistic programs for efficient inference. In NIPS, pages 1152-1160, 2011.
-
(2011)
NIPS
, pp. 1152-1160
-
-
Wingate, D.1
Goodman, N.2
Stuhlmueller, A.3
Siskind, J.M.4
-
28
-
-
84965122247
-
Galileo: Perceiving physical object properties by integrating a physics engine with deep learning
-
J. Wu, I. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum. Galileo: perceiving physical object properties by integrating a physics engine with deep learning. In NIPS, pages 127-135, 2015.
-
(2015)
NIPS
, pp. 127-135
-
-
Wu, J.1
Yildirim, I.2
Lim, J.J.3
Freeman, B.4
Tenenbaum, J.5
-
29
-
-
84949636429
-
3d shapenets: A deep representation for volumetric shapes
-
Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1912-1920, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1912-1920
-
-
Wu, Z.1
Song, S.2
Khosla, A.3
Yu, F.4
Zhang, L.5
Tang, X.6
Xiao, J.7
-
30
-
-
85018928386
-
-
arXiv preprint, May
-
T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros. View synthesis by appearance flow. arXiv preprint, May 2016.
-
(2016)
View Synthesis by Appearance Flow
-
-
Zhou, T.1
Tulsiani, S.2
Sun, W.3
Malik, J.4
Efros, A.A.5
|