메뉴 건너뛰기




Volumn , Issue , 2016, Pages 5003-5011

Unsupervised learning of 3D structure from images

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING;

EID: 85018915604     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (378)

References (30)
  • 9
    • 84965096967 scopus 로고    scopus 로고
    • Spatial transformer networks
    • M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In NIPS, pages 2008-2016, 2015.
    • (2015) NIPS , pp. 2008-2016
    • Jaderberg, M.1    Simonyan, K.2    Zisserman, A.3
  • 12
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • D. Jimenez Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
    • (2014) ICML
    • Jimenez Rezende, D.1    Mohamed, S.2    Wierstra, D.3
  • 13
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine learning, 37(2):183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 15
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 19
    • 84906345204 scopus 로고    scopus 로고
    • Opendr: An approximate differentiable renderer
    • Springer
    • M. M. Loper and M. J. Black. Opendr: An approximate differentiable renderer. In Computer Vision-ECCV 2014, pages 154-169. Springer, 2014.
    • (2014) Computer Vision-ECCV 2014 , pp. 154-169
    • Loper, M.M.1    Black, M.J.2
  • 20
    • 84898942632 scopus 로고    scopus 로고
    • Approximate Bayesian image interpretation using generative probabilistic graphics programs
    • V. Mansinghka, T. D. Kulkarni, Y. N. Perov, and J. Tenenbaum. Approximate bayesian image interpretation using generative probabilistic graphics programs. In NIPS, pages 1520-1528, 2013.
    • (2013) NIPS , pp. 1520-1528
    • Mansinghka, V.1    Kulkarni, T.D.2    Perov, Y.N.3    Tenenbaum, J.4
  • 25
    • 44349136909 scopus 로고    scopus 로고
    • Perceptual multistability predicted by search model for Bayesian decisions
    • R. Sundareswara and P. R. Schrater. Perceptual multistability predicted by search model for bayesian decisions. Journal of Vision, 8(5):12-12, 2008.
    • (2008) Journal of Vision , vol.8 , Issue.5 , pp. 12
    • Sundareswara, R.1    Schrater, P.R.2
  • 26
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229-256, 1992.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.J.1
  • 27
    • 85162505566 scopus 로고    scopus 로고
    • Nonstandard interpretations of probabilistic programs for efficient inference
    • D. Wingate, N. Goodman, A. Stuhlmueller, and J. M. Siskind. Nonstandard interpretations of probabilistic programs for efficient inference. In NIPS, pages 1152-1160, 2011.
    • (2011) NIPS , pp. 1152-1160
    • Wingate, D.1    Goodman, N.2    Stuhlmueller, A.3    Siskind, J.M.4
  • 28
    • 84965122247 scopus 로고    scopus 로고
    • Galileo: Perceiving physical object properties by integrating a physics engine with deep learning
    • J. Wu, I. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum. Galileo: perceiving physical object properties by integrating a physics engine with deep learning. In NIPS, pages 127-135, 2015.
    • (2015) NIPS , pp. 127-135
    • Wu, J.1    Yildirim, I.2    Lim, J.J.3    Freeman, B.4    Tenenbaum, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.