메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 3846-3854

Beyond the shortest path: Unsupervised domain adaptation by Sampling Subspaces along the Spline Flow

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; GEODESY; GRAPH THEORY; PATTERN RECOGNITION;

EID: 84959206735     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7299009     Document Type: Conference Paper
Times cited : (55)

References (40)
  • 5
    • 78651087125 scopus 로고    scopus 로고
    • Using directional statistics to learn cast shadows from a multi-spectral light sources physical model
    • R. Caseiro, J. F. Henriques, and J. Batista. Using directional statistics to learn cast shadows from a multi-spectral light sources physical model. In ICIP, 2010
    • (2010) ICIP
    • Caseiro, R.1    Henriques, J.F.2    Batista, J.3
  • 6
    • 84856685905 scopus 로고    scopus 로고
    • A nonparametric riemannian framework on tensor field application to foreground segmentation
    • R. Caseiro, J. F. Henriques, P. Martins, and J. Batista. A nonparametric riemannian framework on tensor field application to foreground segmentation. In ICCV, 2011
    • (2011) ICCV
    • Caseiro, R.1    Henriques, J.F.2    Martins, P.3    Batista, J.4
  • 8
    • 84887398616 scopus 로고    scopus 로고
    • Rolling riemannian manifolds to solve the multiclass classification problem
    • R. Caseiro, P. Martins, J. F. Henriques, F. S. Leite, and J. Batista. Rolling riemannian manifolds to solve the multiclass classification problem. In CVPR, 2013
    • (2013) CVPR
    • Caseiro, R.1    Martins, P.2    Henriques, J.F.3    Leite, F.S.4    Batista, J.5
  • 9
    • 70450189959 scopus 로고    scopus 로고
    • Intrinsic mean shift for clustering on stiefel and grassmann manifolds
    • H. Cetingul and R. Vidal. Intrinsic mean shift for clustering on stiefel and grassmann manifolds. In CVPR, 2009
    • (2009) CVPR
    • Cetingul, H.1    Vidal, R.2
  • 10
    • 0742274700 scopus 로고    scopus 로고
    • Incremental learning in biological machine learning systems
    • S. Chalup. Incremental learning in biological machine learning systems. Int. Journal Neural Systems, 12:447-466, 2002
    • (2002) Int. Journal Neural Systems , vol.12 , pp. 447-466
    • Chalup, S.1
  • 12
    • 84898798531 scopus 로고    scopus 로고
    • Unsupervised visual domain adaptation using subspace alignment
    • B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In CVPR, 2013
    • (2013) CVPR
    • Fernando, B.1    Habrard, A.2    Sebban, M.3    Tuytelaars, T.4
  • 13
    • 85026926273 scopus 로고    scopus 로고
    • Lost in the past: Recognizing locations over large time lags
    • B. Fernando, T. Tommasi, and T. Tuytelaars. Lost in the past: Recognizing locations over large time lags. In arxiv, 2014
    • (2014) Arxiv
    • Fernando, B.1    Tommasi, T.2    Tuytelaars, T.3
  • 14
    • 84899010695 scopus 로고    scopus 로고
    • Reshaping visual datasets for domain adaptation
    • B. Gong, K. Grauman, and F. Sha. Reshaping visual datasets for domain adaptation. In NIPS, 2013
    • (2013) NIPS
    • Gong, B.1    Grauman, K.2    Sha, F.3
  • 15
    • 84902291141 scopus 로고    scopus 로고
    • Learning kernels for unsupervised domain adaptation with applications to visual object recognition
    • B. Gong, K. Grauman, and F. Sha. Learning kernels for unsupervised domain adaptation with applications to visual object recognition. IJCV, 109(1-2):3-27, 2014
    • (2014) IJCV , vol.109 , Issue.1-2 , pp. 3-27
    • Gong, B.1    Grauman, K.2    Sha, F.3
  • 16
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012
    • (2012) CVPR
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 17
    • 84887329810 scopus 로고    scopus 로고
    • Learning cross-domain information transfer for location recognition and clustering
    • R. Gopalan. Learning cross-domain information transfer for location recognition and clustering. In CVPR, 2013
    • (2013) CVPR
    • Gopalan, R.1
  • 18
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised approach. In ICCV, 2011
    • (2011) ICCV
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 19
    • 84901386413 scopus 로고    scopus 로고
    • Unsupervised adaptation across domain shifts by generating intermediate data representations
    • R. Gopalan, R. Li, and R. Chellappa. Unsupervised adaptation across domain shifts by generating intermediate data representations. PAMI, 2014
    • (2014) PAMI
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 22
    • 84898801687 scopus 로고    scopus 로고
    • Dictionary learning and sparse coding on grassmann manifolds: An extrinsic solution
    • M. Harandi, C. Sanderson, C. Shen, and B. C. Lovel. Dictionary learning and sparse coding on grassmann manifolds: An extrinsic solution. In ICCV, 2013
    • (2013) ICCV
    • Harandi, M.1    Sanderson, C.2    Shen, C.3    Lovel, B.C.4
  • 23
    • 51949088643 scopus 로고    scopus 로고
    • Im2gps: Estimating geographic information from a single image
    • J. Hays and A. Efros. Im2gps: estimating geographic information from a single image. In CVPR, 2008
    • (2008) CVPR
    • Hays, J.1    Efros, A.2
  • 25
    • 84898831806 scopus 로고    scopus 로고
    • Beyond hard negative mining: Efficient detector learning via blockcirculant decomposition
    • J. Henriques, J. Carreira, R. Caseiro, and J. Batista. Beyond hard negative mining: efficient detector learning via blockcirculant decomposition. In ICCV, 2013
    • (2013) ICCV
    • Henriques, J.1    Carreira, J.2    Caseiro, R.3    Batista, J.4
  • 26
    • 84902242377 scopus 로고    scopus 로고
    • Model-driven domain adaptation on product manifolds for unconstrained face recognition
    • H. Ho and R. Gopalan. Model-driven domain adaptation on product manifolds for unconstrained face recognition. 109(110-125):IJCV, 2014
    • (2014) IJCV , vol.109 , pp. 110-125
    • Ho, H.1    Gopalan, R.2
  • 28
    • 85026926127 scopus 로고    scopus 로고
    • Discovering latent domains for multisource domain adaptation
    • J. Hoffman, B. Kulis, T. Darrell,, and K. Saenko. Discovering latent domains for multisource domain adaptation. In CVPR, 2012
    • (2012) CVPR
    • Hoffman, J.1    Kulis, B.2    Darrell, T.3    Saenko, K.4
  • 29
    • 84867663160 scopus 로고    scopus 로고
    • Averaging complex subspaces via a karcher mean approach
    • K. Huper, M. Kleinsteuberb, and H. Shenb. Averaging complex subspaces via a karcher mean approach. Signal Pro-cessing, 93(459-467), 2013
    • (2013) Signal Pro-cessing , vol.93 , pp. 459-467
    • Huper, K.1    Kleinsteuberb, M.2    Shenb, H.3
  • 30
    • 35548981394 scopus 로고    scopus 로고
    • On the geometry of rolling and interpolation curves on Sn, SOn, Grassmann manifolds
    • K. Hupper and F. S. Leite. On the geometry of rolling and interpolation curves on Sn, SOn, Grassmann manifolds. J. Dynamical Control Systems, 13(4):467-502, 2007
    • (2007) J. Dynamical Control Systems , vol.13 , Issue.4 , pp. 467-502
    • Hupper, K.1    Leite, F.S.2
  • 31
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In CVPR, 2011
    • (2011) CVPR
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 33
    • 84887392643 scopus 로고    scopus 로고
    • Subspace interpolation via dictionary learning unsupervised domain adaptation
    • J. Ni, Q. Qiu, and R. Chellappa. Subspace interpolation via dictionary learning unsupervised domain adaptation. In CVPR, 2013
    • (2013) CVPR
    • Ni, J.1    Qiu, Q.2    Chellappa, R.3
  • 35
    • 47749087267 scopus 로고    scopus 로고
    • A new geometric algorithm to generate smooth interpolating curves on riemannian manifolds
    • R. Rodrigues and F. Leite. A new geometric algorithm to generate smooth interpolating curves on riemannian manifolds. LMS J. Comput. Math., 8:251-266, 2005
    • (2005) LMS J. Comput. Math , vol.8 , pp. 251-266
    • Rodrigues, R.1    Leite, F.2
  • 36
    • 80052906503 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, 2010
    • (2010) ECCV
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 38
    • 33845598926 scopus 로고    scopus 로고
    • Smooth interpolation of orientation by rolling and wrapping for robot motion planning
    • Y. Shen, K. Hupper, and F. S. Leite. Smooth interpolation of orientation by rolling and wrapping for robot motion planning. In ICRA, 2006
    • (2006) ICRA
    • Shen, Y.1    Hupper, K.2    Leite, F.S.3
  • 39
  • 40
    • 80053126879 scopus 로고    scopus 로고
    • Statistical computations on grassmann and stiefel manifolds for image and video-based recognition
    • P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa. Statistical computations on grassmann and stiefel manifolds for image and video-based recognition. PAMI, 33(11):2273-2286, 2011.
    • (2011) PAMI , vol.33 , Issue.11 , pp. 2273-2286
    • Turaga, P.1    Veeraraghavan, A.2    Srivastava, A.3    Chellappa, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.