메뉴 건너뛰기




Volumn 9, Issue , 2010, Pages 701-708

Factorized orthogonal latent spaces

Author keywords

[No Author keywords available]

Indexed keywords

DATA STREAM; LATENT SPACE MODELS; LOW DIMENSIONAL; MONOCULAR IMAGE; MULTI-KERNEL; MULTI-VIEW LEARNING; ORTHOGONALITY CONSTRAINTS; PARAMETERS SETTING; POSE ESTIMATION; PRIVATE SPACES; REGULARIZER; ROBUST APPROACHES;

EID: 84862294408     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (93)

References (20)
  • 1
    • 84938401419 scopus 로고    scopus 로고
    • Sparse probabilistic projections
    • C. Archambeau, and F. Bach. Sparse Probabilistic Projections. NIPS, 2008.
    • (2008) NIPS
    • Archambeau, C.1    Bach, F.2
  • 2
    • 14344252374 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the SMO algorithm
    • F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In ICML, 2004.
    • (2004) ICML
    • Bach, F.1    Lanckriet, G.2    Jordan, M.3
  • 4
    • 70450141089 scopus 로고    scopus 로고
    • Gaussian process latent variable models for human pose estimation
    • C. H. Ek, P. H. Torr, and N. D. Lawrence. Gaussian process latent variable models for human pose estimation. In MLMI, 2007.
    • (2007) MLMI
    • Ek, C.H.1    Torr, P.H.2    Lawrence, N.D.3
  • 5
    • 83055181498 scopus 로고    scopus 로고
    • Ambiguity modeling in latent spaces
    • C. H. Ek, P. H. Torr, and N. D. Lawrence. Ambiguity modeling in latent spaces. In MLMI, 2008.
    • (2008) MLMI
    • Ek, C.H.1    Torr, P.H.2    Lawrence, N.D.3
  • 6
    • 70450208076 scopus 로고    scopus 로고
    • Rank priors for continuous non-linear dimensionality reduction
    • A. Geiger, R. Urtasun, and T. Darrell. Rank priors for continuous non-linear dimensionality reduction. In CVPR, 2009.
    • (2009) CVPR
    • Geiger, A.1    Urtasun, R.2    Darrell, T.3
  • 7
    • 34948816627 scopus 로고    scopus 로고
    • Semisupervised hierarchical models for 3D human pose reconstruction
    • A. Kanaujia, C. Sminchisescu, and D. Metaxas. Semisupervised Hierarchical Models for 3D Human Pose Reconstruction. In CVPR, 2007.
    • (2007) CVPR
    • Kanaujia, A.1    Sminchisescu, C.2    Metaxas, D.3
  • 8
    • 55949104732 scopus 로고    scopus 로고
    • Probabilistic approach to detecting dependencies between data sets
    • A. Klami, and S. Kaski. Probabilistic approach to detecting dependencies between data sets. In Neurocomputing, 72:39-46, 2008.
    • (2008) Neurocomputing , vol.72 , pp. 39-46
    • Klami, A.1    Kaski, S.2
  • 10
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    • 11
    • N. D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. The Journal of Machine Learning Research, 6:1783- 1816, 11 2005.
    • (2005) The Journal of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.D.1
  • 11
    • 51949110101 scopus 로고    scopus 로고
    • Learning for larger datasets with the Gaussian process latent variable model
    • N. D. Lawrence. Learning for larger datasets with the Gaussian process latent variable model. AISTATS, 2007.
    • (2007) AISTATS
    • Lawrence, N.D.1
  • 12
    • 83055188351 scopus 로고    scopus 로고
    • PhD thesis, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland
    • G. Leen. Context assisted information extraction. PhD thesis, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, 2008.
    • (2008) Context Assisted Information Extraction
    • Leen, G.1
  • 13
    • 33749261821 scopus 로고    scopus 로고
    • Kernel information embeddings
    • R. Memisevic. Kernel information embeddings. In ICML, 2006.
    • (2006) ICML
    • Memisevic, R.1
  • 15
    • 50649092154 scopus 로고    scopus 로고
    • Learning shared latent structure for image synthesis and robotic imitation
    • A. Shon, K. Grochow, A. Hertzmann, and R. Rao. Learning shared latent structure for image synthesis and robotic imitation. NIPS, 2006.
    • (2006) NIPS
    • Shon, A.1    Grochow, K.2    Hertzmann, A.3    Rao, R.4
  • 17
    • 70450181379 scopus 로고    scopus 로고
    • Shared kernel information embedding for discriminative inference
    • L. Sigal, R. Memisevic, and D. J. Fleet. Shared kernel information embedding for discriminative inference. In CVPR, 2009.
    • (2009) CVPR
    • Sigal, L.1    Memisevic, R.2    Fleet, D.J.3
  • 19
    • 78650301922 scopus 로고    scopus 로고
    • Discriminative Gaussian process latent variable model for classification
    • R. Urtasun and T. Darrell. Discriminative gaussian process latent variable model for classification. ICML, 2007.
    • (2007) ICML
    • Urtasun, R.1    Darrell, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.