메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages 3753-3783

Kernel Bayes' rule: Bayesian inference with positive definite kernels

Author keywords

Bayes' rule; Kernel method; Reproducing kernel Hilbert space

Indexed keywords

BAYES' RULE; BAYESIAN COMPUTATION; CONDITIONAL PROBABILITIES; KERNEL METHODS; PARAMETRIC MODELING; POSITIVE DEFINITE KERNELS; REPRODUCING KERNEL HILBERT SPACES; STATE-SPACE MODELING;

EID: 84893460360     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (173)

References (57)
  • 5
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for dirichlet process mixtures
    • David Blei and Michael Jordan. Variational inference for dirichlet process mixtures. Journal of Bayesian Analysis, 1(1):121-144, 2006.
    • (2006) Journal of Bayesian Analysis , vol.1 , Issue.1 , pp. 121-144
    • Blei, D.1    Jordan, M.2
  • 7
    • 0001245944 scopus 로고
    • An alternative method of cross-validation for the smoothing of density estimates
    • Aedian W. Bowman. An alternative method of cross-validation for the smoothing of density estimates. Biometrika, 71(2):353-360, 1984.
    • (1984) Biometrika , vol.71 , Issue.2 , pp. 353-360
    • Bowman, A.W.1
  • 8
  • 10
    • 85162469726 scopus 로고    scopus 로고
    • Optimal learning rates for least squares svms using gaussian kernels
    • J. Shawe-Taylor R.S. Zemel, P. Bartlett, F.C.N. Pereira, and K.Q.Weinberger, editors Curran Associates, Inc
    • Mona Eberts and Ingo Steinwart. Optimal learning rates for least squares svms using gaussian kernels. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, and K.Q.Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 1539-1547. Curran Associates, Inc., 2011.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 1539-1547
    • Eberts, M.1    Steinwart, I.2
  • 12
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2:243-264, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 13
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
    • Kenji Fukumizu, Francis R. Bach, and Michael I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. Journal of Machine Learning Research, 5:73-99, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 15
    • 68649121147 scopus 로고    scopus 로고
    • Kernel dimension reduction in regression
    • Kenji Fukumizu, Francis R. Bach, andMichael I. Jordan. Kernel dimension reduction in regression. Annals of Statistics, 37(4):1871-1905, 2009a.
    • (2009) Annals of Statistics , vol.37 , Issue.4 , pp. 1871-1905
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 17
    • 84864063983 scopus 로고    scopus 로고
    • A kernel method for the two-sample-problem
    • B. Schölkopf, J. Platt, and T. Hoffman, editors, Cambridge,MA, MIT Press
    • Arthur Gretton, Karsten M. Borgwardt, Malte Rasch, Bernhard Schölkopf, and A. Smola. A kernel method for the two-sample-problem. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 513-520, Cambridge,MA, 2007.MIT Press.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 513-520
    • Gretton, A.1    Borgwardt, K.M.2    Rasch, M.3    Schölkopf, B.4    Smola, A.5
  • 19
    • 80053164096 scopus 로고    scopus 로고
    • A fast, consistent kernel two-sample test
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • Arthur Gretton, Kenji Fukumizu, Zaid Harchaoui, and Bharath Sriperumbudur. A fast, consistent kernel two-sample test. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 673-681. 2009a.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 673-681
    • Gretton, A.1    Fukumizu, K.2    Harchaoui, Z.3    Sriperumbudur, B.4
  • 24
    • 85162067877 scopus 로고    scopus 로고
    • Testing for homogeneity with kernel Fisher discriminant analysis
    • Cambridge, MA, MIT Press
    • Zaid Harchaoui, Francis Bach, and Eric Moulines. Testing for homogeneity with kernel Fisher discriminant analysis. In Advances in Neural Information Processing Systems 21, pages 609-616, Cambridge, MA, 2008. MIT Press.
    • (2008) Advances in Neural Information Processing Systems , vol.21 , pp. 609-616
    • Harchaoui, Z.1    Bach, F.2    Moulines, E.3
  • 26
    • 54649084158 scopus 로고    scopus 로고
    • A consistent modification of a test for independence based on the empirical characteristic function
    • Annaliisa Kankainen and Nikolai G. Ushakov. A consistent modification of a test for independence based on the empirical characteristic function. Journal ofMathematical Sciencies, 89:1582-1589, 1998.
    • (1998) Journal OfMathematical Sciencies , vol.89 , pp. 1582-1589
    • Kankainen, A.1    Ushakov, N.G.2
  • 27
    • 84972808999 scopus 로고
    • Estimating normal means with a conjugate style Dirichlet process prior
    • Steven MacEachern. Estimating normal means with a conjugate style Dirichlet process prior. Communications in Statistics-Simulation and Computation, 23(3):727-741, 1994.
    • (1994) Communications in Statistics-Simulation and Computation , vol.23 , Issue.3 , pp. 727-741
    • Maceachern, S.1
  • 28
    • 0033466420 scopus 로고    scopus 로고
    • Sequential importance sampling for nonparametric Bayes models: The next generation
    • Steven N.MacEachern,Merlise Clyde, and Jun S. Liu. Sequential importance sampling for nonparametric Bayes models: The next generation. The Canadian Journal of Statistics, 27(2):251-267, 1999.
    • (1999) The Canadian Journal of Statistics , vol.27 , Issue.2 , pp. 251-267
    • Maceachern, S.N.1    Clyde, M.2    Liu, J.S.3
  • 30
    • 0042231922 scopus 로고    scopus 로고
    • Sharp Conditions for the CLT of Linear Processes in a Hilbert Space
    • Florence Merlevéde, Magda Peligrad, and Sergey Utev. Sharp conditions for the clt of linear processes in a hilbert space. Journal of Theoretical Probability, 10:681-693, 1997. (Pubitemid 127429595)
    • (1997) Journal of Theoretical Probability , vol.10 , Issue.3 , pp. 681-693
    • Merlevede, F.1    Peligrad, M.2    Utev, S.3
  • 31
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • DOI 10.1162/0899766052530802
    • Charles A. Micchelli and Massimiliano Pontil. On learning vector-valued functions. Neural Computation, 17(1):177-204, 2005. (Pubitemid 40305887)
    • (2005) Neural Computation , vol.17 , Issue.1 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 33
    • 51649096948 scopus 로고    scopus 로고
    • L1-convergence of smoothing densities in non-parametric state space models
    • Valérie Monbet, Pierre Ailliot, and Pierre-François Marteau. l1-convergence of smoothing densities in non-parametric state space models. Statistical Inference for Stochastic Processes, 11:311-325, 2008.
    • (2008) Statistical Inference for Stochastic Processes , vol.11 , pp. 311-325
    • Monbet, V.1    Ailliot, P.2    Marteau, P.3
  • 34
    • 4043092820 scopus 로고    scopus 로고
    • Nonparametric Bayesian data analysis
    • DOI 10.1214/088342304000000017, Bayes Then and Now
    • Peter Müller and Fernando A. Quintana. Nonparametric Bayesian data analysis. Statistical Science, 19(1):95-110, 2004. (Pubitemid 39056879)
    • (2004) Statistical Science , vol.19 , Issue.1 , pp. 95-110
    • Muller, P.1    Quintana, F.A.2
  • 37
    • 0002369909 scopus 로고
    • Empirical choice of histograms and kernel density estimators
    • Mats Rudemo. Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, 9(2):pp. 65-78, 1982.
    • (1982) Scandinavian Journal of Statistics , vol.9 , Issue.2 , pp. 65-78
    • Rudemo, M.1
  • 41
    • 34547455409 scopus 로고    scopus 로고
    • Learning theory estimates via integral operators and their approximation
    • Steve Smale and Ding-Xuan Zhou. Learning theory estimates via integral operators and their approximation. Constructive Approximation, 26:153-172, 2007.
    • (2007) Constructive Approximation , vol.26 , pp. 153-172
    • Smale, S.1    Zhou, D.-X.2
  • 43
    • 84860645997 scopus 로고    scopus 로고
    • Nonparametric tree graphical models via kernel embeddings
    • Le Song, Arthur Gretton., and Carlos Guestrin. Nonparametric tree graphical models via kernel embeddings. In Proceedings of AISTATS 2010, pages 765-772, 2010a.
    • (2010) Proceedings of AISTATS 2010 , pp. 765-772
    • Gretton, L.S.A.1    Guestrin, C.2
  • 50
    • 0000439527 scopus 로고
    • Optimal global rates of convergence for nonparametric regression
    • Charles J. Stone. Optimal global rates of convergence for nonparametric regression. Annals of Statistics, 10(4):1040-1053, 1982.
    • (1982) Annals of Statistics , vol.10 , Issue.4 , pp. 1040-1053
    • Stone, C.J.1
  • 51
    • 0031014291 scopus 로고    scopus 로고
    • Inferring coalescence times from DNA sequence data
    • Simon Tavaré, David J. Balding, Robert C. Griffithis, and Peter Donnelly. Inferring coalescence times from dna sequece data. Genetics, 145:505-518, 1997. (Pubitemid 27068401)
    • (1997) Genetics , vol.145 , Issue.2 , pp. 505-518
    • Tavare, S.1    Balding, D.J.2    Griffiths, R.C.3    Donnelly, P.4
  • 52
    • 0005765108 scopus 로고    scopus 로고
    • Monte Carlo hidden Markov models: Learning non-parametric models of partially observable stochastic processes
    • Sebastian Thrun, John Langford, and Dieter Fox. Monte Carlo hidden Markov models: Learning non-parametric models of partially observable stochastic processes. In Proceedings of International Conference on Machine Learning (ICML 1999), pages 415-424, 1999.
    • (1999) Proceedings of International Conference on Machine Learning (ICML 1999) , pp. 415-424
    • Thrun, S.1    Langford, J.2    Fox, D.3
  • 54
    • 0002612391 scopus 로고
    • Hierarchical priors and mixture models, with applications in regression and density estimation
    • P. Freeman et al., editor Wiley
    • MikeWest, PeterMüller, andMichael D. Escobar. Hierarchical priors and mixture models, with applications in regression and density estimation. In P. Freeman et al., editor, Aspects of Uncertainty: A Tribute to D.V. Lindley, pages 363-386. Wiley, 1994.
    • (1994) Aspects of Uncertainty: A Tribute to D.V. Lindley , pp. 363-386
    • Müller, M.P.1    Escobar, M.D.2
  • 55
    • 84968466142 scopus 로고
    • Asymptotic behavior of the eigenvalues of certain integral equations
    • Harold Widom. Asymptotic behavior of the eigenvalues of certain integral equations. Transactions of the American Mathematical Society, 109:278-295, 1963.
    • (1963) Transactions of the American Mathematical Society , vol.109 , pp. 278-295
    • Widom, H.1
  • 56
    • 0001292373 scopus 로고
    • Asymptotic behavior of the eigenvalues of certain integral equations II
    • HaroldWidom. Asymptotic behavior of the eigenvalues of certain integral equations II. Archive for Rational Mechanics and Analysis, 17:215-229, 1964.
    • (1964) Archive for Rational Mechanics and Analysis , vol.17 , pp. 215-229
    • Widom, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.