메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 3316-3324

Training a feedback loop for hand pose estimation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; NEURAL NETWORKS;

EID: 84973889951     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.379     Document Type: Conference Paper
Times cited : (316)

References (39)
  • 1
    • 84880775422 scopus 로고    scopus 로고
    • Motion capture of hands in action using discriminative salient points
    • L. Ballan, A. Taneja, J. Gall, L. V. Gool, and M. Pollefeys. Motion Capture of Hands in Action Using Discriminative Salient Points. In ECCV, 2012.
    • (2012) ECCV
    • Ballan, L.1    Taneja, A.2    Gall, J.3    Gool, L.V.4    Pollefeys, M.5
  • 6
    • 24644436425 scopus 로고    scopus 로고
    • Learning a similarity metric discriminatively, with application to face verification
    • S. Chopra, R. Hadsell, and Y. LeCun. Learning a Similarity Metric Discriminatively, with Application to Face Verification. In CVPR, 2005.
    • (2005) CVPR
    • Chopra, S.1    Hadsell, R.2    LeCun, Y.3
  • 8
    • 80054934120 scopus 로고    scopus 로고
    • Model-based 3d hand pose estimation from monocular video
    • M. de La Gorce, D. J. Fleet, and N. Paragios. Model-Based 3D Hand Pose Estimation from Monocular Video. PAMI, 33(9), 2011.
    • (2011) PAMI , vol.33 , Issue.9
    • De La Gorce, M.1    Fleet, D.J.2    Paragios, N.3
  • 9
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to Generate Chairs with Convolutional Neural Networks. In CVPR, 2015.
    • (2015) CVPR
    • Dosovitskiy, A.1    Springenberg, J.T.2    Brox, T.3
  • 13
    • 84856668124 scopus 로고    scopus 로고
    • Real time hand pose estimation using depth sensors
    • C. Keskin, F. K?rac?, Y. E. Kara, and L. Akarun. Real Time Hand Pose Estimation Using Depth Sensors. In ICCV, 2011.
    • (2011) ICCV
    • Keskin, C.1    Krac, F.2    Kara, Y.E.3    Akarun, L.4
  • 14
    • 84881506083 scopus 로고    scopus 로고
    • Hand pose estimation and hand shape classification using multi-layered randomized decision forests
    • C. Keskin, F. K?rac?, Y. E. Kara, and L. Akarun. Hand Pose Estimation and Hand Shape Classification Using Multi-Layered Randomized Decision Forests. In ECCV, 2012.
    • (2012) ECCV
    • Keskin, C.1    Krac, F.2    Kara, Y.E.3    Akarun, L.4
  • 17
    • 84897551797 scopus 로고    scopus 로고
    • Real-time sign language recognition using a consumer depth camera
    • A. Kuznetsova, L. Leal-taixe, and B. Rosenhahn. Real-Time Sign Language Recognition Using a Consumer Depth Camera. In ICCV, 2013.
    • (2013) ICCV
    • Kuznetsova, A.1    Leal-Taixe, L.2    Rosenhahn, B.3
  • 20
    • 84998807231 scopus 로고    scopus 로고
    • Analysis-by-synthesis by learning to invert generative black boxes
    • V. Nair, J. Susskind, and G. E. Hinton. Analysis-By-Synthesis by Learning to Invert Generative Black Boxes. In Proc. of ICANN, 2008.
    • (2008) Proc. of ICANN
    • Nair, V.1    Susskind, J.2    Hinton, G.E.3
  • 22
    • 84898466334 scopus 로고    scopus 로고
    • Efficient model-based 3d tracking of hand articulations using kinect
    • I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Efficient Model-Based 3D Tracking of Hand Articulations Using Kinect. In BMVC, 2011.
    • (2011) BMVC
    • Oikonomidis, I.1    Kyriazis, N.2    Argyros, A.A.3
  • 23
    • 84856650938 scopus 로고    scopus 로고
    • Full DOF tracking of a hand interacting with an object by modeling occlusions and physical constraints
    • I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Full DOF Tracking of a Hand Interacting with an Object by Modeling Occlusions and Physical Constraints. In ICCV, 2011.
    • (2011) ICCV
    • Oikonomidis, I.1    Kyriazis, N.2    Argyros, A.A.3
  • 24
    • 0141613215 scopus 로고    scopus 로고
    • Articulated soft objects for multi-view shape and motion capture
    • R. Plänkers and P. Fua. Articulated Soft Objects for Multi-View Shape and Motion Capture. PAMI, 25(10), 2003.
    • (2003) PAMI , vol.25 , Issue.10
    • Plänkers, R.1    Fua, P.2
  • 25
    • 84973858064 scopus 로고    scopus 로고
    • Primesense 3D Sensors
    • PrimeSense. Primesense 3D Sensors, 2015.
    • (2015) PrimeSense
  • 26
    • 84911395980 scopus 로고    scopus 로고
    • Realtime and robust hand tracking from depth
    • C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun. Realtime and Robust Hand Tracking from Depth. In CVPR, 2014.
    • (2014) CVPR
    • Qian, C.1    Sun, X.2    Wei, Y.3    Tang, X.4    Sun, J.5
  • 27
    • 80054774972 scopus 로고    scopus 로고
    • Evaluation of pooling operations in convolutional architectures for object recognition
    • D. Scherer, A. Müller, and S. Behnke. Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. In Proc. of ICANN, 2010.
    • (2010) Proc. of ICANN
    • Scherer, D.1    Müller, A.2    Behnke, S.3
  • 29
    • 84898799681 scopus 로고    scopus 로고
    • Interactive markerless articulated hand motion tracking using rgb and depth data
    • S. Sridhar, A. Oulasvirta, and C. Theobalt. Interactive Markerless Articulated Hand Motion Tracking Using RGB and Depth Data. In ICCV, 2013.
    • (2013) ICCV
    • Sridhar, S.1    Oulasvirta, A.2    Theobalt, C.3
  • 30
    • 84911393251 scopus 로고    scopus 로고
    • Latent regression forest: Structured estimation of 3d articulated hand posture
    • D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim. Latent Regression Forest: Structured Estimation of 3D Articulated Hand Posture. In CVPR, 2014.
    • (2014) CVPR
    • Tang, D.1    Chang, H.J.2    Tejani, A.3    Kim, T.-K.4
  • 31
    • 84898774089 scopus 로고    scopus 로고
    • Real-time articulated hand pose estimation using semi-supervised transductive regression forests
    • D. Tang, T. Yu, and T. Kim. Real-Time Articulated Hand Pose Estimation Using Semi-Supervised Transductive Regression Forests. In ICCV, 2013.
    • (2013) ICCV
    • Tang, D.1    Yu, T.2    Kim, T.3
  • 32
    • 84937843152 scopus 로고    scopus 로고
    • Learning generative models with visual attention
    • Y. Tang, N. Srivastava, and R. Salakhutdinov. Learning Generative Models with Visual Attention. In NIPS, 2014.
    • (2014) NIPS
    • Tang, Y.1    Srivastava, N.2    Salakhutdinov, R.3
  • 33
    • 84866688051 scopus 로고    scopus 로고
    • The vitruvian manifold: Inferring dense correspondences for one-shot human pose estimation
    • J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The Vitruvian Manifold: Inferring Dense Correspondences for One-Shot Human Pose Estimation. In CVPR, 2012.
    • (2012) CVPR
    • Taylor, J.1    Shotton, J.2    Sharp, T.3    Fitzgibbon, A.4
  • 34
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6. 5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton. Lecture 6. 5-Rmsprop: Divide the Gradient by a Running Average of Its Recent Magnitude. COURSERA: Neural Networks for Machine Learning, 2012.
    • (2012) COURSERA: Neural Networks for Machine Learning
    • Tieleman, T.1    Hinton, G.2
  • 35
    • 84907552337 scopus 로고    scopus 로고
    • Real-time continuous pose recovery of human hands using convolutional networks
    • J. Tompson, M. Stein, Y. LeCun, and K. Perlin. Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks. ACM Transactions on Graphics, 33, 2014.
    • (2014) ACM Transactions on Graphics , vol.33
    • Tompson, J.1    Stein, M.2    LeCun, Y.3    Perlin, K.4
  • 36
    • 84959186448 scopus 로고    scopus 로고
    • Capturing hand motion with an rgb-d sensor, fusing a generative model with salient points
    • D. Tzionas, A. Srikantha, P. Aponte, and J. Gall. Capturing Hand Motion with an RGB-D Sensor, Fusing a Generative Model with Salient Points. In Proc. of GCPR, 2014.
    • (2014) Proc. of GCPR
    • Tzionas, D.1    Srikantha, A.2    Aponte, P.3    Gall, J.4
  • 37
    • 84898784928 scopus 로고    scopus 로고
    • Efficient hand pose estimation from a single depth image
    • C. Xu and L. Cheng. Efficient Hand Pose Estimation from a Single Depth Image. In ICCV, 2013.
    • (2013) ICCV
    • Xu, C.1    Cheng, L.2
  • 38
    • 84966582502 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 39
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive Deconvolutional Networks for Mid and High Level Feature Learning. In ICCV, 2011.
    • (2011) ICCV
    • Zeiler, M.D.1    Taylor, G.W.2    Fergus, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.