-
1
-
-
7044269683
-
High breakdown mixture discriminant analysis
-
S. Bashir and E. M. Carter. High breakdown mixture discriminant analysis. J Multivar Anal, 93(1):102-111, 2005.
-
(2005)
J Multivar Anal
, vol.93
, Issue.1
, pp. 102-111
-
-
Bashir, S.1
Carter, E.M.2
-
3
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. COLT 1998, pages 92-100, 1998.
-
(1998)
COLT 1998
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
4
-
-
67649389414
-
Robust supervised classification with mixture models: Learning from data with uncertain labels
-
C. Bouveyron and S. Girard. Robust supervised classification with mixture models: learning from data with uncertain labels. Pattern Recognit, 42(11):2649-2658, 2009.
-
(2009)
Pattern Recognit
, vol.42
, Issue.11
, pp. 2649-2658
-
-
Bouveyron, C.1
Girard, S.2
-
5
-
-
56749103116
-
Sample selection bias correction theory
-
C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh. Sample selection bias correction theory. ALT 2008, pages 38-53, 2008.
-
(2008)
ALT 2008
, pp. 38-53
-
-
Cortes, C.1
Mohri, M.2
Riley, M.3
Rostamizadeh, A.4
-
6
-
-
27744465529
-
Learning from positive and unlabeled examples
-
F. Denis, R. Gilleron, and F. Letouzey. Learning from positive and unlabeled examples. Theor Comput Sci, 348(16):70-83, 2005.
-
(2005)
Theor Comput Sci
, vol.348
, Issue.16
, pp. 70-83
-
-
Denis, F.1
Gilleron, R.2
Letouzey, F.3
-
7
-
-
84900012174
-
Class prior estimation from positive and unlabeled data
-
M. C. du Plessis and M. Sugiyama. Class prior estimation from positive and unlabeled data. IEICE Trans Inf & Syst, E97-D(5):1358-1362, 2014.
-
(2014)
IEICE Trans Inf & Syst
, vol.E97-D
, Issue.5
, pp. 1358-1362
-
-
Du Plessis, M.C.1
Sugiyama, M.2
-
8
-
-
58149180961
-
Learning classifiers from only positive and unlabeled data
-
C. Elkan and K. Noto. Learning classifiers from only positive and unlabeled data. KDD 2008, pages 213-220, 2008.
-
(2008)
KDD 2008
, pp. 213-220
-
-
Elkan, C.1
Noto, K.2
-
9
-
-
0031499747
-
High-breakdown linear discriminant analysis
-
D. M. Hawkins and G. J. McLachlan. High-breakdown linear discriminant analysis. J Am Stat Assoc, 92(437): 136-143, 1997.
-
(1997)
J Am Stat Assoc
, vol.92
, Issue.437
, pp. 136-143
-
-
Hawkins, D.M.1
McLachlan, G.J.2
-
12
-
-
1242341002
-
Estimating a kernel fisher discriminant in the presence of label noise
-
N. D. Lawrence and B. Scholkopf. Estimating a kernel Fisher discriminant in the presence of label noise. ICML 2001, pages 306-313, 2001.
-
(2001)
ICML 2001
, pp. 306-313
-
-
Lawrence, N.D.1
Scholkopf, B.2
-
14
-
-
84862274178
-
Sparse nonparametric density estimation in high dimensions using the rodeo
-
H. Liu, J. D. Lafferty, and L. A. Wasserman. Sparse nonparametric density estimation in high dimensions using the rodeo. AISTATS 2007, pages 283-290, 2007.
-
(2007)
AISTATS 2007
, pp. 283-290
-
-
Liu, H.1
Lafferty, J.D.2
Wasserman, L.A.3
-
15
-
-
83555170269
-
Random classification noise defeats all convex potential boosters
-
P. M. Long and R. A. Servedio. Random classification noise defeats all convex potential boosters. Mach Learn, 78(3):287-304, 2010.
-
(2010)
Mach Learn
, vol.78
, Issue.3
, pp. 287-304
-
-
Long, P.M.1
Servedio, R.A.2
-
16
-
-
84890431307
-
Noise tolerance under risk minimization
-
N. Manwani and P. S. Sastry. Noise tolerance under risk minimization. IEEE T Cybern, 43(3):1146-1151, 2013.
-
(2013)
IEEE t Cybern
, vol.43
, Issue.3
, pp. 1146-1151
-
-
Manwani, N.1
Sastry, P.S.2
-
17
-
-
84969506930
-
Learning from corrupted binary labels via class-probability estimation
-
A. K. Menon, B. van Rooyen, C. S. Ong, and R. C. Williamson. Learning from corrupted binary labels via class-probability estimation. ICML 2015, pages 125-134, 2015.
-
(2015)
ICML 2015
, pp. 125-134
-
-
Menon, A.K.1
Van Rooyen, B.2
Ong, C.S.3
Williamson, R.C.4
-
18
-
-
80053274482
-
Obtaining calibrated probabilities from boosting
-
A. Niculescu-Mizil and R. Caruana. Obtaining calibrated probabilities from boosting. UAI 2005, pages 413-420, 2005.
-
(2005)
UAI 2005
, pp. 413-420
-
-
Niculescu-Mizil, A.1
Caruana, R.2
-
22
-
-
0036134369
-
Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
-
M. Saerens, P. Latinne, and C. Decaestecker. Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure. Neural Comput, 14:21-41, 2002.
-
(2002)
Neural Comput
, vol.14
, pp. 21-41
-
-
Saerens, M.1
Latinne, P.2
Decaestecker, C.3
-
23
-
-
84955479515
-
Class proportion estimation with application to multiclass anomaly rejection
-
T. Sanderson and C. Scott. Class proportion estimation with application to multiclass anomaly rejection. AIS-TATS 2014, pages 850-858, 2014.
-
(2014)
AIS-TATS 2014
, pp. 850-858
-
-
Sanderson, T.1
Scott, C.2
-
24
-
-
84898040500
-
Classification with asymmetric label noise: Consistency and maximal denoising
-
C. Scott, G. Blanchard, and G. Handy. Classification with asymmetric label noise: consistency and maximal denoising. J Mach Learn Res W&CP, 30:489-511, 2013.
-
(2013)
J Mach Learn Res W&CP
, vol.30
, pp. 489-511
-
-
Scott, C.1
Blanchard, G.2
Handy, G.3
-
26
-
-
4444335470
-
The ABC's (and XYZ's) of peptide sequencing
-
H. Steen and M. Mann. The ABC's (and XYZ's) of peptide sequencing. Nat Rev Mol Cell Biol, 5(9):699-711, 2004.
-
(2004)
Nat Rev Mol Cell Biol
, vol.5
, Issue.9
, pp. 699-711
-
-
Steen, H.1
Mann, M.2
-
27
-
-
66949112586
-
Presence-only data and the EM algorithm
-
G. Ward, T. Hastie, S. Barry, J. Elith, and J.R. Leathwick. Presence-only data and the EM algorithm. Biometrics, 65(2):554-563, 2009.
-
(2009)
Biometrics
, vol.65
, Issue.2
, pp. 554-563
-
-
Ward, G.1
Hastie, T.2
Barry, S.3
Elith, J.4
Leathwick, J.R.5
|