메뉴 건너뛰기




Volumn , Issue , 2016, Pages 2693-2701

Estimating the class prior and posterior from noisy positives and unlabeled data

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS;

EID: 85018867328     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (118)

References (27)
  • 1
    • 7044269683 scopus 로고    scopus 로고
    • High breakdown mixture discriminant analysis
    • S. Bashir and E. M. Carter. High breakdown mixture discriminant analysis. J Multivar Anal, 93(1):102-111, 2005.
    • (2005) J Multivar Anal , vol.93 , Issue.1 , pp. 102-111
    • Bashir, S.1    Carter, E.M.2
  • 2
    • 79551494881 scopus 로고    scopus 로고
    • Semi-supervised novelty detection
    • G. Blanchard, G. Lee, and C. Scott. Semi-supervised novelty detection. J Mach Learn Res, 11:2973-3009, 2010.
    • (2010) J Mach Learn Res , vol.11 , pp. 2973-3009
    • Blanchard, G.1    Lee, G.2    Scott, C.3
  • 3
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. COLT 1998, pages 92-100, 1998.
    • (1998) COLT 1998 , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 4
    • 67649389414 scopus 로고    scopus 로고
    • Robust supervised classification with mixture models: Learning from data with uncertain labels
    • C. Bouveyron and S. Girard. Robust supervised classification with mixture models: learning from data with uncertain labels. Pattern Recognit, 42(11):2649-2658, 2009.
    • (2009) Pattern Recognit , vol.42 , Issue.11 , pp. 2649-2658
    • Bouveyron, C.1    Girard, S.2
  • 6
    • 27744465529 scopus 로고    scopus 로고
    • Learning from positive and unlabeled examples
    • F. Denis, R. Gilleron, and F. Letouzey. Learning from positive and unlabeled examples. Theor Comput Sci, 348(16):70-83, 2005.
    • (2005) Theor Comput Sci , vol.348 , Issue.16 , pp. 70-83
    • Denis, F.1    Gilleron, R.2    Letouzey, F.3
  • 7
    • 84900012174 scopus 로고    scopus 로고
    • Class prior estimation from positive and unlabeled data
    • M. C. du Plessis and M. Sugiyama. Class prior estimation from positive and unlabeled data. IEICE Trans Inf & Syst, E97-D(5):1358-1362, 2014.
    • (2014) IEICE Trans Inf & Syst , vol.E97-D , Issue.5 , pp. 1358-1362
    • Du Plessis, M.C.1    Sugiyama, M.2
  • 8
    • 58149180961 scopus 로고    scopus 로고
    • Learning classifiers from only positive and unlabeled data
    • C. Elkan and K. Noto. Learning classifiers from only positive and unlabeled data. KDD 2008, pages 213-220, 2008.
    • (2008) KDD 2008 , pp. 213-220
    • Elkan, C.1    Noto, K.2
  • 9
    • 0031499747 scopus 로고    scopus 로고
    • High-breakdown linear discriminant analysis
    • D. M. Hawkins and G. J. McLachlan. High-breakdown linear discriminant analysis. J Am Stat Assoc, 92(437): 136-143, 1997.
    • (1997) J Am Stat Assoc , vol.92 , Issue.437 , pp. 136-143
    • Hawkins, D.M.1    McLachlan, G.J.2
  • 12
    • 1242341002 scopus 로고    scopus 로고
    • Estimating a kernel fisher discriminant in the presence of label noise
    • N. D. Lawrence and B. Scholkopf. Estimating a kernel Fisher discriminant in the presence of label noise. ICML 2001, pages 306-313, 2001.
    • (2001) ICML 2001 , pp. 306-313
    • Lawrence, N.D.1    Scholkopf, B.2
  • 14
    • 84862274178 scopus 로고    scopus 로고
    • Sparse nonparametric density estimation in high dimensions using the rodeo
    • H. Liu, J. D. Lafferty, and L. A. Wasserman. Sparse nonparametric density estimation in high dimensions using the rodeo. AISTATS 2007, pages 283-290, 2007.
    • (2007) AISTATS 2007 , pp. 283-290
    • Liu, H.1    Lafferty, J.D.2    Wasserman, L.A.3
  • 15
    • 83555170269 scopus 로고    scopus 로고
    • Random classification noise defeats all convex potential boosters
    • P. M. Long and R. A. Servedio. Random classification noise defeats all convex potential boosters. Mach Learn, 78(3):287-304, 2010.
    • (2010) Mach Learn , vol.78 , Issue.3 , pp. 287-304
    • Long, P.M.1    Servedio, R.A.2
  • 16
    • 84890431307 scopus 로고    scopus 로고
    • Noise tolerance under risk minimization
    • N. Manwani and P. S. Sastry. Noise tolerance under risk minimization. IEEE T Cybern, 43(3):1146-1151, 2013.
    • (2013) IEEE t Cybern , vol.43 , Issue.3 , pp. 1146-1151
    • Manwani, N.1    Sastry, P.S.2
  • 17
    • 84969506930 scopus 로고    scopus 로고
    • Learning from corrupted binary labels via class-probability estimation
    • A. K. Menon, B. van Rooyen, C. S. Ong, and R. C. Williamson. Learning from corrupted binary labels via class-probability estimation. ICML 2015, pages 125-134, 2015.
    • (2015) ICML 2015 , pp. 125-134
    • Menon, A.K.1    Van Rooyen, B.2    Ong, C.S.3    Williamson, R.C.4
  • 18
    • 80053274482 scopus 로고    scopus 로고
    • Obtaining calibrated probabilities from boosting
    • A. Niculescu-Mizil and R. Caruana. Obtaining calibrated probabilities from boosting. UAI 2005, pages 413-420, 2005.
    • (2005) UAI 2005 , pp. 413-420
    • Niculescu-Mizil, A.1    Caruana, R.2
  • 22
    • 0036134369 scopus 로고    scopus 로고
    • Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
    • M. Saerens, P. Latinne, and C. Decaestecker. Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure. Neural Comput, 14:21-41, 2002.
    • (2002) Neural Comput , vol.14 , pp. 21-41
    • Saerens, M.1    Latinne, P.2    Decaestecker, C.3
  • 23
    • 84955479515 scopus 로고    scopus 로고
    • Class proportion estimation with application to multiclass anomaly rejection
    • T. Sanderson and C. Scott. Class proportion estimation with application to multiclass anomaly rejection. AIS-TATS 2014, pages 850-858, 2014.
    • (2014) AIS-TATS 2014 , pp. 850-858
    • Sanderson, T.1    Scott, C.2
  • 24
    • 84898040500 scopus 로고    scopus 로고
    • Classification with asymmetric label noise: Consistency and maximal denoising
    • C. Scott, G. Blanchard, and G. Handy. Classification with asymmetric label noise: consistency and maximal denoising. J Mach Learn Res W&CP, 30:489-511, 2013.
    • (2013) J Mach Learn Res W&CP , vol.30 , pp. 489-511
    • Scott, C.1    Blanchard, G.2    Handy, G.3
  • 26
    • 4444335470 scopus 로고    scopus 로고
    • The ABC's (and XYZ's) of peptide sequencing
    • H. Steen and M. Mann. The ABC's (and XYZ's) of peptide sequencing. Nat Rev Mol Cell Biol, 5(9):699-711, 2004.
    • (2004) Nat Rev Mol Cell Biol , vol.5 , Issue.9 , pp. 699-711
    • Steen, H.1    Mann, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.