메뉴 건너뛰기




Volumn , Issue , 2005, Pages 413-420

Obtaining calibrated probabilities from boosting

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE BOOSTING; ARTIFICIAL INTELLIGENCE; CALIBRATION; FORESTRY; LEARNING SYSTEMS; PROBABILITY;

EID: 80053274482     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (140)

References (18)
  • 4
    • 0002980086 scopus 로고
    • Learning classification trees
    • W. Buntine. Learning classification trees. Statistics and Computing, 2:63-73, 1992.
    • (1992) Statistics and Computing , vol.2 , pp. 63-73
    • Buntine, W.1
  • 6
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, adaboost and bregman distances
    • Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, adaboost and bregman distances. Machine Learning, 48(1-3), 2002.
    • (2002) Machine Learning , vol.48 , Issue.1-3
    • Collins, M.1    Schapire, R.E.2    Singer, Y.3
  • 7
    • 0002345034 scopus 로고
    • The comparison and evaluation of forecasters
    • M.H. DeGroot and S.E. Fienberg. The comparison and evaluation of forecasters. Statistician, 32(1):12-22, 1982.
    • (1982) Statistician , vol.32 , Issue.1 , pp. 12-22
    • Degroot, M.H.1    Fienberg, S.E.2
  • 8
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 38(2), 2000.
    • (2000) The Annals of Statistics , vol.38 , Issue.2
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • J. Platt. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Adv. in Large Margin Classifiers, 1999.
    • (1999) Adv. in Large Margin Classifiers
    • Platt, J.1
  • 13
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based rankings
    • F. Provost and P. Domingos. Tree induction for probability-based rankings. Machine Learning, 2003.
    • (2003) Machine Learning
    • Provost, F.1    Domingos, P.2
  • 15
    • 12844274244 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum margin classifier. J. Mach. Learn. Res., 5, 2004.
    • J. Mach. Learn. Res. , vol.5 , pp. 2004
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 16
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. Schapire, Y. Freund, P. Bartlett, andW. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5):1651-1686, 1998. (Pubitemid 128376902)
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 17
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers
    • B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers. In ICML, 2001.
    • (2001) ICML
    • Zadrozny, B.1    Elkan, C.2
  • 18
    • 0242456763 scopus 로고    scopus 로고
    • Transforming classifier scores into accurate multiclass probability estimates
    • B. Zadrozny and C. Elkan. Transforming classifier scores into accurate multiclass probability estimates. In KDD, 2002.
    • (2002) KDD
    • Zadrozny, B.1    Elkan, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.