메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages 165-179

Integrative clustering of multi-level omics data for disease subtype discovery using sequential double regularization

Author keywords

Group structured lasso; Integrative clustering (iCluster); Penalized EM algorithm; The Cancer Genome Atlas (TCGA)

Indexed keywords

BREAST NEOPLASMS; CLASSIFICATION; CLUSTER ANALYSIS; GENETICS; GENOMICS; HUMAN; PERSONALIZED MEDICINE; PROCEDURES;

EID: 85018828337     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxw039     Document Type: Article
Times cited : (30)

References (35)
  • 1
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • BECK, A. AND TEBOULLE, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2, 183-202.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 3
    • 50949132320 scopus 로고    scopus 로고
    • Mechanisms of cardiomyopathy associated with tyrosine kinase inhibitor cancer therapeutics
    • CHEN, M., KERKELA, R. AND FORCE, T. (2008). Mechanisms of cardiomyopathy associated with tyrosine kinase inhibitor cancer therapeutics. Circulation 118, 84-95.
    • (2008) Circulation , vol.118 , pp. 84-95
    • Chen, M.1    Kerkela, R.2    Force, T.3
  • 5
  • 7
    • 34247097773 scopus 로고    scopus 로고
    • K-means clustering via principal component analysis
    • Greiner R., Schuurmans D. (editors), Banff, AB, Canada: ACM Press
    • DING, C. AND HE, X. (2004). K-means clustering via principal component analysis. In Greiner R., Schuurmans D. (editors), Proceedings of the 21st International Machine Learning Conference, Banff, AB, Canada: ACM Press, Volume 69, http://ranger.uta.edu/~chqding/papers/KmeansPCA1.pdf.
    • (2004) Proceedings of the 21st International Machine Learning Conference , vol.69
    • Ding, C.1    He, X.2
  • 8
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • DUDOIT, S. AND FRIDLYAND, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology 3, 1-21.
    • (2002) Genome Biology , vol.3 , pp. 1-21
    • Dudoit, S.1    Fridlyand, J.2
  • 9
    • 0036188158 scopus 로고    scopus 로고
    • Mixture modelling of gene expression data from microarray experiments
    • GHOSH, D. AND CHINNAIYAN, A.M. (2002). Mixture modelling of gene expression data from microarray experiments. Bioinformatics 18, 275-286.
    • (2002) Bioinformatics , vol.18 , pp. 275-286
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 10
    • 84901302546 scopus 로고    scopus 로고
    • Integrative gene set analysis of multi-platform data with sample heterogeneity
    • HU, J. AND TZENG, J.-Y. (2014). Integrative gene set analysis of multi-platform data with sample heterogeneity. Bioinformatics 30, 1501-1507.
    • (2014) Bioinformatics , vol.30 , pp. 1501-1507
    • Hu, J.1    Tzeng, J.-Y.2
  • 11
    • 84887241795 scopus 로고    scopus 로고
    • Insights into significant pathways and gene interaction networks underlying breast cancer cell line MCF-7 treated with 17β-estradiol (E2)
    • HUAN, J., WANG, L., XING, L., QIN, X., FENG, L., PAN, X. AND ZHU, L. (2014). Insights into significant pathways and gene interaction networks underlying breast cancer cell line MCF-7 treated with 17β-estradiol (E2). Gene 533, 346-355.
    • (2014) Gene , vol.533 , pp. 346-355
    • Huan, J.1    Wang, L.2    Xing, L.3    Qin, X.4    Feng, L.5    Pan, X.6    Zhu, L.7
  • 13
    • 84885617335 scopus 로고    scopus 로고
    • Bayesian consensus clustering
    • LOCK, E. F. AND DUNSON, D. B. (2013). Bayesian consensus clustering. Bioinformatics 29, 2610-2616.
    • (2013) Bioinformatics , vol.29 , pp. 2610-2616
    • Lock, E.F.1    Dunson, D.B.2
  • 14
    • 84876058478 scopus 로고    scopus 로고
    • Joint and individual variation explained for integrated analysis of multiple data types
    • LOCK, E. F., HOADLEY, K. A., MARRON, J. S. AND NOBEL, A. B. (2013). Joint and individual variation explained for integrated analysis of multiple data types. The Annals of Applied Statistics 7, 523-542.
    • (2013) The Annals of Applied Statistics , vol.7 , pp. 523-542
    • Lock, E.F.1    Hoadley, K.A.2    Marron, J.S.3    Nobel, A.B.4
  • 15
    • 66949114265 scopus 로고    scopus 로고
    • Clustering in the presence of scatter
    • MAITRA R. AND RAMLER I. P. (2009). Clustering in the presence of scatter. Biometrics 65, 341-352.
    • (2009) Biometrics , vol.65 , pp. 341-352
    • Maitra, R.1    Ramler, I.P.2
  • 16
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of nonsmooth functions
    • NESTEROV, Y. (2005). Smooth minimization of nonsmooth functions. Mathematical Programming 103, 127-152.
    • (2005) Mathematical Programming , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 17
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • OBOZINSKI, G., TASKAR, B. AND JORDAN, M. I. (2010). Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing 20, 231-252.
    • (2010) Statistics and Computing , vol.20 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 18
    • 84858774470 scopus 로고    scopus 로고
    • High-dimensional support union recovery in multivariate regression
    • Koller D., Schuurmans D., Bengio Y. and Bottou L. (editors), 2008
    • OBOZINSKI, G. R., WAINWRIGHT, M. J. AND JORDAN, M. I. (2008). High-dimensional support union recovery in multivariate regression. In Koller D., Schuurmans D., Bengio Y. and Bottou L. (editors), Advances in Neural Information Processing Systems, the Neural Information Processing Systems Conference, 2008, pp. 1217-1224, https://papers.nips.cc/paper/3432-high-dimensional-support-union-recovery-in-multivariate-regression.pdf.
    • (2008) Advances in Neural Information Processing Systems, the Neural Information Processing Systems Conference , pp. 1217-1224
    • Obozinski, G.R.1    Wainwright, M.J.2    Jordan, M.I.3
  • 19
    • 0034680102 scopus 로고    scopus 로고
    • Molecular portraits of human breast tumours
    • PEROU, C. M., SRLIE, T., EISEN, M. B., RIJN, MATT. AND JEFFREY, S. S.(2000). Molecular portraits of human breast tumours. Nature 406, 747-752.
    • (2000) Nature , vol.406 , pp. 747-752
    • Perou, C.M.1    Srlie, T.2    Eisen, M.B.3    Rijn, M.4    Jeffrey, S.S.5
  • 20
    • 53149135477 scopus 로고    scopus 로고
    • Key issues in conducting a metaanalysis of gene expression microarray datasets
    • RAMASAMY, A., MONDRY, A., HOLMES, C. C. AND ALTMAN, D. G. (2008). Key issues in conducting a metaanalysis of gene expression microarray datasets. PLoS Medicine 5, e184.
    • (2008) PLoS Medicine , vol.5 , pp. e184
    • Ramasamy, A.1    Mondry, A.2    Holmes, C.C.3    Altman, D.G.4
  • 21
    • 84867125131 scopus 로고    scopus 로고
    • Copula mixture model for dependency-seeking clustering
    • Langford J. and Pineau J. (editors), Omnipress
    • REY, M. AND ROTH, V. (2012). Copula mixture model for dependency-seeking clustering. In Langford J. and Pineau J. (editors), Proceedings of the 29th International Conference on Machine Learning, Omnipress, pp. 775-782. http://icml.cc/2012/papers/486.pdf.
    • (2012) Proceedings of the 29th International Conference on Machine Learning , pp. 775-782
    • Rey, M.1    Roth, V.2
  • 23
    • 84897864232 scopus 로고    scopus 로고
    • A pathway-based data integration framework for prediction of disease progression
    • SEOANE, J. A., DAY, I. N., GAUNT, T. R. AND CAMPBELL, C. (2014).A pathway-based data integration framework for prediction of disease progression. Bioinformatics 30, 838-845.
    • (2014) Bioinformatics , vol.30 , pp. 838-845
    • Seoane, J.A.1    Day, I.N.2    Gaunt, T.R.3    Campbell, C.4
  • 24
    • 70449331456 scopus 로고    scopus 로고
    • Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
    • SHEN, R., OLSHEN, A.B. AND LADANYI, M. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912.
    • (2009) Bioinformatics , vol.25 , pp. 2906-2912
    • Shen, R.1    Olshen, A.B.2    Ladanyi, M.3
  • 25
    • 84876068958 scopus 로고    scopus 로고
    • Sparse integrative clustering of multiple omics data sets
    • SHEN, R., WANG, S. AND MO, Q. (2013). Sparse integrative clustering of multiple omics data sets. The Annals of Applied Statistics 7, 269.
    • (2013) The Annals of Applied Statistics , vol.7 , pp. 269
    • Shen, R.1    Wang, S.2    Mo, Q.3
  • 26
    • 21444445077 scopus 로고    scopus 로고
    • Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
    • SIMON, R. (2005). Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. Journal of the National Cancer Institute 97, 866-867.
    • (2005) Journal of the National Cancer Institute , vol.97 , pp. 866-867
    • Simon, R.1
  • 29
    • 34548784943 scopus 로고    scopus 로고
    • Penalized and weighted K-means for clustering with scattered objects and prior information in high-throughput biological data
    • TSENG, G. C. (2007). Penalized and weighted K-means for clustering with scattered objects and prior information in high-throughput biological data. Bioinformatics 23, 2247-2255.
    • (2007) Bioinformatics , vol.23 , pp. 2247-2255
    • Tseng, G.C.1
  • 30
    • 15044346962 scopus 로고    scopus 로고
    • Tight clustering: A resampling-based approach for identifying stable and tight patterns in data
    • TSENG, G. C. AND WONG, W. H. (2005). Tight clustering: a resampling-based approach for identifying stable and tight patterns in data. Biometrics 61, 10-16.
    • (2005) Biometrics , vol.61 , pp. 10-16
    • Tseng, G.C.1    Wong, W.H.2
  • 31
    • 84861414639 scopus 로고    scopus 로고
    • Comprehensive literature review and statistical considerations for microarray meta⣳analysis
    • TSENG, G. C., GHOSH, D. AND FEINGOLD, E. (2012). Comprehensive literature review and statistical considerations for microarray meta⣳analysis. Nucleic Acids Research 40, 3785-3799.
    • (2012) Nucleic Acids Research , vol.40 , pp. 3785-3799
    • Tseng, G.C.1    Ghosh, D.2    Feingold, E.3
  • 32
    • 71149091239 scopus 로고    scopus 로고
    • Information theoretic measures for clusterings comparison: Is a correction for chance necessary?
    • Danyluk A. and Wagstaff K. L. (editors), ACM Press
    • VINH, N. X., EPPS, J. AND BAILEY, J. (2009). Information theoretic measures for clusterings comparison: is a correction for chance necessary? In Danyluk A. and Wagstaff K. L. (editors), Proceedings of the 26th Annual International Conference on Machine Learning, ACM Press, pp. 1073-1080. http://www.machinelearning.org/archive/icml2009/papers/10.pdf.
    • (2009) Proceedings of the 26th Annual International Conference on Machine Learning , pp. 1073-1080
    • Vinh, N.X.1    Epps, J.2    Bailey, J.3
  • 34
    • 84874726726 scopus 로고    scopus 로고
    • MiRCancer: A microRNA-cancer association database constructed by text mining on literature
    • XIE, B., DING, Q., HAN, H. AND WU, D. (2013) miRCancer: a microRNA-cancer association database constructed by text mining on literature Bioinformatics 29, 638-644.
    • (2013) Bioinformatics , vol.29 , pp. 638-644
    • Xie, B.1    Ding, Q.2    Han, H.3    Wu, D.4
  • 35
    • 16244366026 scopus 로고
    • Index for rating diagnostic tests
    • YOUDEN, W. J. (1950). Index for rating diagnostic tests. Cancer 3, 32-35.
    • (1950) Cancer , vol.3 , pp. 32-35
    • Youden, W.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.