메뉴 건너뛰기




Volumn 65, Issue 2, 2009, Pages 341-352

Clustering in the presence of scatter

Author keywords

Bayes' information criterion; Biweight estimator; Exact c separation; K clips; MCLUST; Methylmercury; Tight clustering

Indexed keywords

ENVIRONMENTAL PROTECTION AGENCY; MERCURY COMPOUNDS;

EID: 66949114265     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2008.01064.x     Document Type: Article
Times cited : (20)

References (36)
  • 1
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803 821. (Pubitemid 23298358)
    • (1993) Biometrics , vol.49 , Issue.3 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 2
    • 0032375671 scopus 로고    scopus 로고
    • Nearest-neighbor clutter removal for estimating features in spatial point processes
    • and
    • Byers, S. and Raftery, A. E. (1998). Nearest-neighbor clutter removal for estimating features in spatial point processes. Journal of the American Statistical Association 93, 577 584.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 577-584
    • Byers, S.1    Raftery, A.E.2
  • 3
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • and
    • Celeux, G. and Govaert, G. (1995). Gaussian parsimonious clustering models. Pattern Recognition 28, 781 793.
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 4
    • 0032337237 scopus 로고    scopus 로고
    • Detecting features in spatial point processes with clutter via model-based clustering
    • and
    • Dasgupta, A. and Raftery, A.E. (1998). Detecting features in spatial point processes with clutter via model-based clustering. Journal of the American Statistical Association 93, 294 302.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 294-302
    • Dasgupta, A.1    Raftery, A.E.2
  • 6
    • 0036080361 scopus 로고    scopus 로고
    • Adaptive quality-based clustering of gene expression profiles
    • De Smet, F., Mathys, J., Marchal, K., Thijs, G., De Moor, B., and Moreau, Y. (2002). Adaptive quality-based clustering of gene expression profiles. Bioinformatics 18, 735 746. (Pubitemid 34679120)
    • (2002) Bioinformatics , vol.18 , Issue.5 , pp. 735-746
    • De Smet, F.1    Mathys, J.2    Marchal, K.3    Thijs, G.4    De Moor, B.5    Moreau, Y.6
  • 9
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which cluster method? Answers via model-based cluster analysis
    • and
    • Fraley, C. and Raftery, A. E. (1998). How many clusters? Which cluster method? Answers via model-based cluster analysis. Computer Journal 41, 578 588.
    • (1998) Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 10
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • and
    • Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97, 611 631.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 14
    • 33748888529 scopus 로고
    • Statistical theory in clustering
    • Hartigan, J. (1985). Statistical theory in clustering. Journal of Classification 2, 63 76.
    • (1985) Journal of Classification , vol.2 , pp. 63-76
    • Hartigan, J.1
  • 19
    • 33746257145 scopus 로고    scopus 로고
    • The practice of cluster analysis
    • DOI 10.1007/s00357-006-0002-6
    • Kettenring, J. R. (2006). The practice of cluster analysis. Journal of Classification 23, 3 30. (Pubitemid 44099757)
    • (2006) Journal of Classification , vol.23 , Issue.1 , pp. 3-30
    • Kettenring, J.R.1
  • 21
    • 0015615312 scopus 로고
    • Statistical behavior of rain attenuation
    • Lin, S. H. (1973). Statistical behavior of rain attenuation. Bell System Techincal Journal 52, 557 581.
    • (1973) Bell System Techincal Journal , vol.52 , pp. 557-581
    • Lin, S.H.1
  • 22
    • 0035420381 scopus 로고    scopus 로고
    • Clustering massive datasets with applications in software metrics and tomography
    • Maitra, R. (2001). Clustering massive datasets with applications in software metrics and tomography. Technometrics 43, 336 346.
    • (2001) Technometrics , vol.43 , pp. 336-346
    • Maitra, R.1
  • 24
    • 0015113659 scopus 로고
    • Practical problems in a method of cluster analysis
    • Marriott, F. H. (1971). Practical problems in a method of cluster analysis. Biometrics 27, 501 514.
    • (1971) Biometrics , vol.27 , pp. 501-514
    • Marriott, F.H.1
  • 25
    • 0003891734 scopus 로고
    • Mixture models: Inference and application to clustering
    • and. New York, NY. Dekker.
    • McLachlan, G. and Basford, K 1988). Mixture models: Inference and application to clustering. Statistics: Textbooks and Monographs, New York, NY : Dekker.
    • (1988) Statistics: Textbooks and Monographs
    • McLachlan, G.1    Basford, K.2
  • 27
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • and
    • Milligan, G. W. and Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159 179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 29
    • 0004244049 scopus 로고    scopus 로고
    • National Academy of Sciences. Washington, DC. National Academy Press.
    • National Academy of Sciences 2000). Toxicological Effects of Methylmercury. Washington, DC : National Academy Press.
    • (2000) Toxicological Effects of Methylmercury.
  • 30
    • 85153205545 scopus 로고    scopus 로고
    • R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0, Available at
    • R Development Core Team 2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Available at : http://www.R-project.org.
    • (2008)
  • 31
    • 0003988626 scopus 로고
    • Nonparametric clustering techniques
    • In. New York. Wiley.
    • Ramey, D. B. (1985). Nonparametric clustering techniques. In Encyclopedia of Statistical Sciences, 6, 318 319. New York : Wiley.
    • (1985) Encyclopedia of Statistical Sciences , vol.6 , pp. 318-319
    • Ramey, D.B.1
  • 32
    • 0001340183 scopus 로고
    • Clustering methods based on likelihood ratio criteria
    • and
    • Scott, A. J. and Symons, M. J. (1971). Clustering methods based on likelihood ratio criteria. Biometrics 27, 387 397.
    • (1971) Biometrics , vol.27 , pp. 387-397
    • Scott, A.J.1    Symons, M.J.2
  • 33
    • 0032999396 scopus 로고    scopus 로고
    • Prenatal methylmercury exposure as a cardiovascular risk factor at seven years of age
    • Sörensen, N., Murata, K., Budtz-Jrgensen, E., Weihe, P., and Grandjean, P. (1999). Prenatal exposure as a cardiovascular risk factor at seven years of age. Epidemiology 10 (6 370 375. (Pubitemid 29288234)
    • (1999) Epidemiology , vol.10 , Issue.4 , pp. 370-375
    • Sorensen, N.1    Murata, K.2    Budtz-Jorgensen, E.3    Weihe, P.4    Grandjean, P.5
  • 36
    • 15044346962 scopus 로고    scopus 로고
    • Tight clustering: A resampling-based approach for identifying stable and tight patterns in data
    • DOI 10.1111/j.0006-341X.2005.031032.x
    • Tseng, G. C. and Wong, W. H. (2005). Tight clustering: A resampling based approach for identifying stable and tight patterns in data. Biometrics 61, 10 16. (Pubitemid 40380959)
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 10-16
    • Tseng, G.C.1    Wong, W.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.