메뉴 건너뛰기




Volumn 23, Issue 17, 2007, Pages 2247-2255

Penalized and weighted K-means for clustering with scattered objects and prior information in high-throughput biological data

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CLUSTER ANALYSIS; DATA MINING; GENE EXPRESSION PROFILING; GENOMICS; HIGH THROUGHPUT SCREENING; INFORMATION PROCESSING; KAPPA STATISTICS; MATHEMATICAL COMPUTING; MAXIMUM LIKELIHOOD METHOD; MICROARRAY ANALYSIS; NORMAL DISTRIBUTION; PRIORITY JOURNAL; PROTEOMICS; SIMULATION; TANDEM MASS SPECTROMETRY;

EID: 34548784943     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btm320     Document Type: Article
Times cited : (86)

References (44)
  • 2
    • 0037469122 scopus 로고    scopus 로고
    • Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
    • Biernacki,C. et al. (2003) Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput. Stat. Data Anal., 41, 561-575.
    • (2003) Comput. Stat. Data Anal , vol.41 , pp. 561-575
    • Biernacki, C.1
  • 4
    • 0000642069 scopus 로고
    • Replicating cluster analysis: Method, consistency, and validity
    • Breckenridge,J.N. (1989) Replicating cluster analysis: Method, consistency, and validity. Multivariate Behav. Res., 24, 147-161.
    • (1989) Multivariate Behav. Res , vol.24 , pp. 147-161
    • Breckenridge, J.N.1
  • 5
    • 0001626339 scopus 로고
    • A classification EM algorithm for clustering and two stochastic versions
    • Celeux,G. and Govaert,G. (1992) A classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal., 14, 315-332.
    • (1992) Comput. Stat. Data Anal , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 6
    • 3142749026 scopus 로고    scopus 로고
    • A knowledge-based clustering algorithm driven by Gene Ontol-ogy
    • Cheng,J. et al. (2004) A knowledge-based clustering algorithm driven by Gene Ontol-ogy. J. Biopharm. Stat., 14, 687-700.
    • (2004) J. Biopharm. Stat , vol.14 , pp. 687-700
    • Cheng, J.1
  • 7
    • 0038160051 scopus 로고    scopus 로고
    • Cancer diagnosis using proteomic patterns
    • Conrads,T.P. et al. (2003) Cancer diagnosis using proteomic patterns. Expert Rev. Mol. Diagn., 3, 411-420.
    • (2003) Expert Rev. Mol. Diagn , vol.3 , pp. 411-420
    • Conrads, T.P.1
  • 8
    • 0032337237 scopus 로고    scopus 로고
    • Detecting features in spatial point processes with clutter via model-based clustering
    • Dasgupta,A. and Raftery,A.E. (1998) Detecting features in spatial point processes with clutter via model-based clustering. J. Am. Stat. Assoc., 93, 294-302.
    • (1998) J. Am. Stat. Assoc , vol.93 , pp. 294-302
    • Dasgupta, A.1    Raftery, A.E.2
  • 9
    • 3142756502 scopus 로고    scopus 로고
    • Open source clustering software
    • De Hoon,M.J.L. et al. (2004) Open source clustering software. Bioinformatics, 20, 1453-1454.
    • (2004) Bioinformatics , vol.20 , pp. 1453-1454
    • De Hoon, M.J.L.1
  • 10
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • Dudoit,S. and Fridlyand,J. (2002) A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol., 3, 0036.1-0036.21.
    • (2002) Genome Biol , vol.3
    • Dudoit, S.1    Fridlyand, J.2
  • 11
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley,C. and Raftery,A.E. (2002) Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc., 97, 611-631.
    • (2002) J. Am. Stat. Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 12
    • 0040539004 scopus 로고
    • Classification and mixture approach to clustering via maximum likelihood
    • Ganesalingam,S. (1989) Classification and mixture approach to clustering via maximum likelihood. Appl. Stat., 38, 455-566.
    • (1989) Appl. Stat , vol.38 , pp. 455-566
    • Ganesalingam, S.1
  • 13
    • 0004241258 scopus 로고    scopus 로고
    • 2nd ed. Chapman & Hall/CRC, Boca Raton, USA
    • Gordon,A.D. (1999) Classification. 2nd ed. Chapman & Hall/CRC, Boca Raton, USA.
    • (1999) Classification
    • Gordon, A.D.1
  • 14
    • 0038119396 scopus 로고    scopus 로고
    • Techniques of cluster algorithms in data mining
    • Grabmeier,J. and Rudolph,A. (2002) Techniques of cluster algorithms in data mining. Data Mining Knowl. Discov., 6, 303-360.
    • (2002) Data Mining Knowl. Discov , vol.6 , pp. 303-360
    • Grabmeier, J.1    Rudolph, A.2
  • 15
    • 0038014879 scopus 로고    scopus 로고
    • Co-clustering of biological networks and gene expression data
    • Hanisch,D. et al. (2002) Co-clustering of biological networks and gene expression data. Bioinformatics, 18, 145-154.
    • (2002) Bioinformatics , vol.18 , pp. 145-154
    • Hanisch, D.1
  • 16
    • 0001138328 scopus 로고
    • A K-means clustering algorithm
    • Hartigan,J.A. and Wong,M.A. (1979) A K-means clustering algorithm. Appl. Stat., 28, 100-108.
    • (1979) Appl. Stat , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 17
    • 0034568109 scopus 로고    scopus 로고
    • Gene shaving as a method for identifying distinct sets of genes with similar expression patterns
    • Hastie,T. et al. (2000) Gene shaving as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol. 1, 0003.1-0003.21.
    • (2000) Genome Biol , vol.1
    • Hastie, T.1
  • 18
    • 33646895693 scopus 로고    scopus 로고
    • Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data
    • Huang,D. and Pan,W. (2006) Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data. Bioinformatics, 22, 1259-1268.
    • (2006) Bioinformatics , vol.22 , pp. 1259-1268
    • Huang, D.1    Pan, W.2
  • 19
    • 20444459841 scopus 로고    scopus 로고
    • Statistical characterization of charge state and residue dependence of low energy CID peptide dissociation patterns
    • Huang,Y. et al. (2005) Statistical characterization of charge state and residue dependence of low energy CID peptide dissociation patterns. Anal. Chem., 77, 5800-5813.
    • (2005) Anal. Chem , vol.77 , pp. 5800-5813
    • Huang, Y.1
  • 20
    • 34548790878 scopus 로고    scopus 로고
    • A data mining scheme for identifying peptide structural motifs responsible for different MS/MS fragmentation intensity patterns, in revision
    • Huang,Y. et al. (2007) A data mining scheme for identifying peptide structural motifs responsible for different MS/MS fragmentation intensity patterns. Journal of Proteomic Research. (in revision).
    • (2007) Journal of Proteomic Research
    • Huang, Y.1
  • 21
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert,J. and Arabie,P. (1985) Comparing partitions. J. Classific. 2, 193-218.
    • (1985) J. Classific , vol.2 , pp. 193-218
    • Hubert, J.1    Arabie, P.2
  • 23
    • 1842486852 scopus 로고    scopus 로고
    • A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model
    • Jain,S. and Neal,R.M. (2004) A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. J. Comput. Graph. Stat., 13, 158-182.
    • (2004) J. Comput. Graph. Stat , vol.13 , pp. 158-182
    • Jain, S.1    Neal, R.M.2
  • 27
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • McLachlan,G.J. et al. (2002) A mixture model-based approach to the clustering of microarray expression data. Bioinformatics, 18 413-422.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1
  • 28
    • 0036739286 scopus 로고    scopus 로고
    • Bayesian infinite mixture model-based clustering of gene expression profiles
    • Medvedovic,M. and Sivaganesan,S. (2002) Bayesian infinite mixture model-based clustering of gene expression profiles. Bioinformatics 18, 1194-1206.
    • (2002) Bioinformatics , vol.18 , pp. 1194-1206
    • Medvedovic, M.1    Sivaganesan, S.2
  • 29
    • 0031270377 scopus 로고    scopus 로고
    • A comparative study of clustering methods
    • Messatfa,H. and Zait,M. (1997) A comparative study of clustering methods. Future Generation Comput. Syst., 13, 149-159.
    • (1997) Future Generation Comput. Syst , vol.13 , pp. 149-159
    • Messatfa, H.1    Zait, M.2
  • 30
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan,G.W. and Cooper,M.C. (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 31
    • 33645289673 scopus 로고    scopus 로고
    • Incorporating gene functions as priors in model-based clustering of microarray gene expression data
    • Pan,W. (2006) Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Bioinformatics, 22, 795-801.
    • (2006) Bioinformatics , vol.22 , pp. 795-801
    • Pan, W.1
  • 32
    • 33750022956 scopus 로고    scopus 로고
    • Semi-supervised learning via penalized mixture model with application to microarray sample classification
    • Pan,W. et al. (2006) Semi-supervised learning via penalized mixture model with application to microarray sample classification. Bioinformatics, 22, 2388-2395.
    • (2006) Bioinformatics , vol.22 , pp. 2388-2395
    • Pan, W.1
  • 34
    • 0842309161 scopus 로고    scopus 로고
    • Discovering molecular pathways from protein interaction and gene expression data
    • Segal,E. et al. (2003) Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics, 19, i264-i271.
    • (2003) Bioinformatics , vol.19
    • Segal, E.1
  • 35
    • 0141506116 scopus 로고    scopus 로고
    • CLICK and EXPANDER: A system for clustering and visualizing gene expression data
    • Sharan,R. et al. (2003) CLICK and EXPANDER: A system for clustering and visualizing gene expression data. Bioinformatics, 19, 1787-1799.
    • (2003) Bioinformatics , vol.19 , pp. 1787-1799
    • Sharan, R.1
  • 37
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
    • Spellman,P.T. et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell, 9, 3273-3297.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 38
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with selforganizing maps: Methods and application to hematopoietic differentiation
    • Tamayo,P. et al. (1999) Interpreting patterns of gene expression with selforganizing maps: Methods and application to hematopoietic differentiation. PNAS., 96, 2907-2912.
    • (1999) PNAS , vol.96 , pp. 2907-2912
    • Tamayo, P.1
  • 39
    • 0033028596 scopus 로고    scopus 로고
    • Systematic determination of genetic network architecture
    • Tavazoie,S. et al. (1999) Systematic determination of genetic network architecture. Nat. Genet., 22, 281-285.
    • (1999) Nat. Genet , vol.22 , pp. 281-285
    • Tavazoie, S.1
  • 40
    • 33750021210 scopus 로고    scopus 로고
    • Evaluation and comparison of gene clustering methods in microarray analysis
    • Thalamuthu,A. et al. (2006) Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics, 22 2405-2412.
    • (2006) Bioinformatics , vol.22 , pp. 2405-2412
    • Thalamuthu, A.1
  • 41
    • 26644472430 scopus 로고    scopus 로고
    • Cluster validation by prediction strength
    • Tibshirani,R. and Walther,G. (2005) Cluster validation by prediction strength. J. Comput. Graph. Stat., 14, 511-528.
    • (2005) J. Comput. Graph. Stat , vol.14 , pp. 511-528
    • Tibshirani, R.1    Walther, G.2
  • 42
    • 15044346962 scopus 로고    scopus 로고
    • Tight clustering: A resampling-based approach for identifying stable and tight patterns in data
    • Tseng,G.C. and Wong,W.H. (2005) Tight clustering: A resampling-based approach for identifying stable and tight patterns in data. Biometrics, 61, 10-16.
    • (2005) Biometrics , vol.61 , pp. 10-16
    • Tseng, G.C.1    Wong, W.H.2
  • 43
    • 0036649020 scopus 로고    scopus 로고
    • Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters
    • Wu,L.F. et al. (2002) Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat. Genet., 31, 255-265.
    • (2002) Nat. Genet , vol.31 , pp. 255-265
    • Wu, L.F.1
  • 44
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung,K.Y. et al. (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics, 17 977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.