메뉴 건너뛰기




Volumn 36, Issue 17, 2017, Pages 2750-2763

A comparison of risk prediction methods using repeated observations: an application to electronic health records for hemodialysis

Author keywords

clinical risk prediction; electronic health records; end stage renal disease; functional data analysis; hemodialysis; joint models; longitudinal data

Indexed keywords

ARTICLE; DATA ANALYSIS; ELECTRONIC HEALTH RECORD; END STAGE RENAL DISEASE; FOLLOW UP; HEMODIALYSIS; HUMAN; INTERMETHOD COMPARISON; LONGITUDINAL STUDY; MACHINE LEARNING; MORTALITY; OBSERVATIONAL STUDY; PREDICTOR VARIABLE; RISK ASSESSMENT; STATISTICAL ANALYSIS; ALGORITHM; BIOMETRY; COMPARATIVE STUDY; COMPUTER SIMULATION; MONTE CARLO METHOD; PROCEDURES; SURVIVAL ANALYSIS;

EID: 85018742981     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.7308     Document Type: Article
Times cited : (43)

References (31)
  • 2
    • 85034844728 scopus 로고    scopus 로고
    • The use of repeated blood pressure measures for cardiovascular risk prediction: a comparison of statistical models in the ARIC study
    • In Press
    • Sweeting MJ, Barrett JK, Thompson SG, Wood AM. The use of repeated blood pressure measures for cardiovascular risk prediction: a comparison of statistical models in the ARIC study. Statistics in Medicine 2016. In Press.
    • (2016) Statistics in Medicine
    • Sweeting, M.J.1    Barrett, J.K.2    Thompson, S.G.3    Wood, A.M.4
  • 5
    • 79952263869 scopus 로고    scopus 로고
    • Discrimination measures for survival outcomes: connection between the AUC and the predictiveness curve
    • Viallon V, Latouche A. Discrimination measures for survival outcomes: connection between the AUC and the predictiveness curve. Biometrical Journal 2011; 53(2): 217–236.
    • (2011) Biometrical Journal , vol.53 , Issue.2 , pp. 217-236
    • Viallon, V.1    Latouche, A.2
  • 6
    • 33847345021 scopus 로고    scopus 로고
    • Dynamic prediction by landmarking in event history analysis
    • Van Houwelingen HC. Dynamic prediction by landmarking in event history analysis. Scandinavian Journal of Statistics 2007; 34(1): 70–85.
    • (2007) Scandinavian Journal of Statistics , vol.34 , Issue.1 , pp. 70-85
    • Van Houwelingen, H.C.1
  • 7
    • 84939886481 scopus 로고    scopus 로고
    • Using the landmark method for creating prediction models in large datasets derived from electronic health records
    • Wells BJ, Chagin KM, Li L, Hu B, Yu C, Kattan MW. Using the landmark method for creating prediction models in large datasets derived from electronic health records. Health Care Management Science 2015; 18(1): 86–92.
    • (2015) Health Care Management Science , vol.18 , Issue.1 , pp. 86-92
    • Wells, B.J.1    Chagin, K.M.2    Li, L.3    Hu, B.4    Yu, C.5    Kattan, M.W.6
  • 8
    • 85015982112 scopus 로고    scopus 로고
    • Controlling for informed presence bias due to the number of health encounters in an electronic health record
    • Goldstein BA, Bhavsar NA, Phelan M, Pencina MJ. Controlling for informed presence bias due to the number of health encounters in an electronic health record. American Journal of Epidemiology 2016; 184(11): 847–855.
    • (2016) American Journal of Epidemiology , vol.184 , Issue.11 , pp. 847-855
    • Goldstein, B.A.1    Bhavsar, N.A.2    Phelan, M.3    Pencina, M.J.4
  • 9
    • 79952934063 scopus 로고    scopus 로고
    • Regularization paths for Cox's proportional hazards model via coordinate descent
    • Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox's proportional hazards model via coordinate descent. Journal of Statistical Software 2011; 39(5): 1–13.
    • (2011) Journal of Statistical Software , vol.39 , Issue.5 , pp. 1-13
    • Simon, N.1    Friedman, J.2    Hastie, T.3    Tibshirani, R.4
  • 15
    • 84900855077 scopus 로고    scopus 로고
    • Variable selection in generalized functional linear models
    • Gertheiss J, Maity A, Staicu Ana-Maria. Variable selection in generalized functional linear models. Statistics 2013; 2(1): 86–101.
    • (2013) Statistics , vol.2 , Issue.1 , pp. 86-101
    • Gertheiss, J.1    Maity, A.2    Staicu, A.-M.3
  • 19
    • 84888344537 scopus 로고    scopus 로고
    • Estimator selection and combination in scalar-on-function regression
    • Goldsmith J, Scheipl F. Estimator selection and combination in scalar-on-function regression. Computational Statistics & Data Analysis 2014; 70(C): 362–372.
    • (2014) Computational Statistics & Data Analysis , vol.70 , Issue.C , pp. 362-372
    • Goldsmith, J.1    Scheipl, F.2
  • 20
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: an overview
    • Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 2004; 14(3): 809–834.
    • (2004) Statistica Sinica , vol.14 , Issue.3 , pp. 809-834
    • Tsiatis, A.A.1    Davidian, M.2
  • 22
    • 80052787679 scopus 로고    scopus 로고
    • Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
    • Rizopoulos D. Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics 2011; 67(3): 819–829.
    • (2011) Biometrics , vol.67 , Issue.3 , pp. 819-829
    • Rizopoulos, D.1
  • 23
    • 36749005103 scopus 로고    scopus 로고
    • Joint models for a primary endpoint and multiple longitudinal covariate processes
    • Li E, Wang N, Wang NY. Joint models for a primary endpoint and multiple longitudinal covariate processes. Biometrics 2007; 63(4): 1068–1078.
    • (2007) Biometrics , vol.63 , Issue.4 , pp. 1068-1078
    • Li, E.1    Wang, N.2    Wang, N.Y.3
  • 25
    • 0033936550 scopus 로고    scopus 로고
    • Time-dependent ROC curves for censored survival data and a diagnostic marker
    • Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 2000; 56(2): 337–344.
    • (2000) Biometrics , vol.56 , Issue.2 , pp. 337-344
    • Heagerty, P.J.1    Lumley, T.2    Pepe, M.S.3
  • 26
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 2005; 24(11): 1713–1723.
    • (2005) Statistics in Medicine , vol.24 , Issue.11 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 29
    • 84875243337 scopus 로고    scopus 로고
    • Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes
    • Austin PC, Tu JV, Ho JE, Levy D, Lee DS. Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. Journal of Clinical Epidemiology 2013; 66(4): 398–407.
    • (2013) Journal of Clinical Epidemiology , vol.66 , Issue.4 , pp. 398-407
    • Austin, P.C.1    Tu, J.V.2    Ho, J.E.3    Levy, D.4    Lee, D.S.5
  • 31
    • 84958599888 scopus 로고    scopus 로고
    • Strategies for handling missing data in electronic health record derived data
    • Wells BJ, Chagin KM, Nowacki AS, Kattan MW. Strategies for handling missing data in electronic health record derived data. EGEMS 2013; 1(3): 1035.
    • (2013) EGEMS , vol.1 , Issue.3 , pp. 1035
    • Wells, B.J.1    Chagin, K.M.2    Nowacki, A.S.3    Kattan, M.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.