-
1
-
-
85014666740
-
Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review
-
Goldstein BA, Navar AM, Pencina MJ, Ioannidis JP. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. Journal of the American Medical Informatics Association 2017; 24(1): 198–208.
-
(2017)
Journal of the American Medical Informatics Association
, vol.24
, Issue.1
, pp. 198-208
-
-
Goldstein, B.A.1
Navar, A.M.2
Pencina, M.J.3
Ioannidis, J.P.4
-
2
-
-
85034844728
-
The use of repeated blood pressure measures for cardiovascular risk prediction: a comparison of statistical models in the ARIC study
-
In Press
-
Sweeting MJ, Barrett JK, Thompson SG, Wood AM. The use of repeated blood pressure measures for cardiovascular risk prediction: a comparison of statistical models in the ARIC study. Statistics in Medicine 2016. In Press.
-
(2016)
Statistics in Medicine
-
-
Sweeting, M.J.1
Barrett, J.K.2
Thompson, S.G.3
Wood, A.M.4
-
3
-
-
84979846064
-
US renal data system 2015 annual data report: epidemiology of kidney disease in the United States
-
Saran R, Li Y, Robinson B, Abbott KC, Agodoa LY, Ayanian J, Bragg-Gresham J, Balkrishnan R, Chen JL, Cope E, Eggers PW, Gillen D, Gipson D, Hailpern SM, Hall YN, He K, Herman W, Heung M, Hirth RA, Hutton D, Jacobsen SJ, Kalantar-Zadeh K, Kovesdy CP, Lu Y, Molnar MZ, Morgenstern H, Nallamothu B, Nguyen DV, O'Hare AM, Plattner B, Pisoni R, Port FK, Rao P, Rhee CM, Sakhuja A, Schaubel DE, Selewski DT, Shahinian V, Sim JJ, Song P, Streja E, Kurella Tamura M, Tentori F, White S, Woodside K, Hirth RA. US renal data system 2015 annual data report: epidemiology of kidney disease in the United States. American Journal of Kidney Diseases 2016; 67(3 Suppl 1): 1–305.
-
(2016)
American Journal of Kidney Diseases
, vol.67
, Issue.3
, pp. 1-305
-
-
Saran, R.1
Li, Y.2
Robinson, B.3
Abbott, K.C.4
Agodoa, L.Y.5
Ayanian, J.6
Bragg-Gresham, J.7
Balkrishnan, R.8
Chen, J.L.9
Cope, E.10
Eggers, P.W.11
Gillen, D.12
Gipson, D.13
Hailpern, S.M.14
Hall, Y.N.15
He, K.16
Herman, W.17
Heung, M.18
Hirth, R.A.19
Hutton, D.20
Jacobsen, S.J.21
Kalantar-Zadeh, K.22
Kovesdy, C.P.23
Lu, Y.24
Molnar, M.Z.25
Morgenstern, H.26
Nallamothu, B.27
Nguyen, D.V.28
O'Hare, A.M.29
Plattner, B.30
Pisoni, R.31
Port, F.K.32
Rao, P.33
Rhee, C.M.34
Sakhuja, A.35
Schaubel, D.E.36
Selewski, D.T.37
Shahinian, V.38
Sim, J.J.39
Song, P.40
Streja, E.41
Kurella Tamura, M.42
Tentori, F.43
White, S.44
Woodside, K.45
Hirth, R.A.46
more..
-
5
-
-
79952263869
-
Discrimination measures for survival outcomes: connection between the AUC and the predictiveness curve
-
Viallon V, Latouche A. Discrimination measures for survival outcomes: connection between the AUC and the predictiveness curve. Biometrical Journal 2011; 53(2): 217–236.
-
(2011)
Biometrical Journal
, vol.53
, Issue.2
, pp. 217-236
-
-
Viallon, V.1
Latouche, A.2
-
6
-
-
33847345021
-
Dynamic prediction by landmarking in event history analysis
-
Van Houwelingen HC. Dynamic prediction by landmarking in event history analysis. Scandinavian Journal of Statistics 2007; 34(1): 70–85.
-
(2007)
Scandinavian Journal of Statistics
, vol.34
, Issue.1
, pp. 70-85
-
-
Van Houwelingen, H.C.1
-
7
-
-
84939886481
-
Using the landmark method for creating prediction models in large datasets derived from electronic health records
-
Wells BJ, Chagin KM, Li L, Hu B, Yu C, Kattan MW. Using the landmark method for creating prediction models in large datasets derived from electronic health records. Health Care Management Science 2015; 18(1): 86–92.
-
(2015)
Health Care Management Science
, vol.18
, Issue.1
, pp. 86-92
-
-
Wells, B.J.1
Chagin, K.M.2
Li, L.3
Hu, B.4
Yu, C.5
Kattan, M.W.6
-
8
-
-
85015982112
-
Controlling for informed presence bias due to the number of health encounters in an electronic health record
-
Goldstein BA, Bhavsar NA, Phelan M, Pencina MJ. Controlling for informed presence bias due to the number of health encounters in an electronic health record. American Journal of Epidemiology 2016; 184(11): 847–855.
-
(2016)
American Journal of Epidemiology
, vol.184
, Issue.11
, pp. 847-855
-
-
Goldstein, B.A.1
Bhavsar, N.A.2
Phelan, M.3
Pencina, M.J.4
-
9
-
-
79952934063
-
Regularization paths for Cox's proportional hazards model via coordinate descent
-
Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox's proportional hazards model via coordinate descent. Journal of Statistical Software 2011; 39(5): 1–13.
-
(2011)
Journal of Statistical Software
, vol.39
, Issue.5
, pp. 1-13
-
-
Simon, N.1
Friedman, J.2
Hastie, T.3
Tibshirani, R.4
-
10
-
-
84985920576
-
Random survival forests for competing risks
-
Ishwaran H, Gerds TA, Kogalur UB, Moore RD, Gange SJ, Lau BM. Random survival forests for competing risks. Biostatistics 2014; 15(4): 757–773.
-
(2014)
Biostatistics
, vol.15
, Issue.4
, pp. 757-773
-
-
Ishwaran, H.1
Gerds, T.A.2
Kogalur, U.B.3
Moore, R.D.4
Gange, S.J.5
Lau, B.M.6
-
13
-
-
83455181653
-
Penalized functional regression
-
Goldsmith J, Bobb J, Crainiceanu CM, Caffo B, Reich D. Penalized functional regression. Journal of Computational and Graphical Statistics 2011; 20(4): 830–851.
-
(2011)
Journal of Computational and Graphical Statistics
, vol.20
, Issue.4
, pp. 830-851
-
-
Goldsmith, J.1
Bobb, J.2
Crainiceanu, C.M.3
Caffo, B.4
Reich, D.5
-
14
-
-
84930386213
-
Cox regression models with functional covariates for survival data
-
Gellar JE, Colantuoni E, Needham DM, Crainiceanu CM. Cox regression models with functional covariates for survival data. Statistical Modelling 2015; 15(3): 256–278.
-
(2015)
Statistical Modelling
, vol.15
, Issue.3
, pp. 256-278
-
-
Gellar, J.E.1
Colantuoni, E.2
Needham, D.M.3
Crainiceanu, C.M.4
-
15
-
-
84900855077
-
Variable selection in generalized functional linear models
-
Gertheiss J, Maity A, Staicu Ana-Maria. Variable selection in generalized functional linear models. Statistics 2013; 2(1): 86–101.
-
(2013)
Statistics
, vol.2
, Issue.1
, pp. 86-101
-
-
Gertheiss, J.1
Maity, A.2
Staicu, A.-M.3
-
17
-
-
84901804822
-
Functional generalized additive models
-
McLean MW, Hooker G, Staicu AM, Scheipl F, Ruppert D. Functional generalized additive models. Journal of Computational and Graphical Statistics 2014; 23(1): 249–269.
-
(2014)
Journal of Computational and Graphical Statistics
, vol.23
, Issue.1
, pp. 249-269
-
-
McLean, M.W.1
Hooker, G.2
Staicu, A.M.3
Scheipl, F.4
Ruppert, D.5
-
18
-
-
85022155892
-
A lag functional linear model for prediction of magnetization transfer ratio in multiple sclerosis
-
In Press
-
Pomann GM, Staicu AM, Lobaton EJ, Mejia AF, Dewey BE, Reich DS, Sweeney EM, Shinohara RT. A lag functional linear model for prediction of magnetization transfer ratio in multiple sclerosis. Annals of Applied Statistics. In Press.
-
Annals of Applied Statistics
-
-
Pomann, G.M.1
Staicu, A.M.2
Lobaton, E.J.3
Mejia, A.F.4
Dewey, B.E.5
Reich, D.S.6
Sweeney, E.M.7
Shinohara, R.T.8
-
19
-
-
84888344537
-
Estimator selection and combination in scalar-on-function regression
-
Goldsmith J, Scheipl F. Estimator selection and combination in scalar-on-function regression. Computational Statistics & Data Analysis 2014; 70(C): 362–372.
-
(2014)
Computational Statistics & Data Analysis
, vol.70
, Issue.C
, pp. 362-372
-
-
Goldsmith, J.1
Scheipl, F.2
-
20
-
-
8644246036
-
Joint modeling of longitudinal and time-to-event data: an overview
-
Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 2004; 14(3): 809–834.
-
(2004)
Statistica Sinica
, vol.14
, Issue.3
, pp. 809-834
-
-
Tsiatis, A.A.1
Davidian, M.2
-
22
-
-
80052787679
-
Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
-
Rizopoulos D. Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics 2011; 67(3): 819–829.
-
(2011)
Biometrics
, vol.67
, Issue.3
, pp. 819-829
-
-
Rizopoulos, D.1
-
23
-
-
36749005103
-
Joint models for a primary endpoint and multiple longitudinal covariate processes
-
Li E, Wang N, Wang NY. Joint models for a primary endpoint and multiple longitudinal covariate processes. Biometrics 2007; 63(4): 1068–1078.
-
(2007)
Biometrics
, vol.63
, Issue.4
, pp. 1068-1078
-
-
Li, E.1
Wang, N.2
Wang, N.Y.3
-
25
-
-
0033936550
-
Time-dependent ROC curves for censored survival data and a diagnostic marker
-
Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 2000; 56(2): 337–344.
-
(2000)
Biometrics
, vol.56
, Issue.2
, pp. 337-344
-
-
Heagerty, P.J.1
Lumley, T.2
Pepe, M.S.3
-
26
-
-
19944372078
-
Generating survival times to simulate Cox proportional hazards models
-
Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 2005; 24(11): 1713–1723.
-
(2005)
Statistics in Medicine
, vol.24
, Issue.11
, pp. 1713-1723
-
-
Bender, R.1
Augustin, T.2
Blettner, M.3
-
27
-
-
0021135218
-
Regression modelling strategies for improved prognostic prediction
-
Harrell FE, Lee KL, Califf RM, Pryor DB, Rosati RA. Regression modelling strategies for improved prognostic prediction. Statistics in Medicine 1984; 3(2): 143–152.
-
(1984)
Statistics in Medicine
, vol.3
, Issue.2
, pp. 143-152
-
-
Harrell, F.E.1
Lee, K.L.2
Califf, R.M.3
Pryor, D.B.4
Rosati, R.A.5
-
28
-
-
84960469948
-
Regularized brain reading with shrinkage and smoothing
-
Wehbe L, Ramdas A, Steorts RC, Shalizi CR. Regularized brain reading with shrinkage and smoothing. The Annals of Applied Statistics 2015; 9(4): 1997–2022.
-
(2015)
The Annals of Applied Statistics
, vol.9
, Issue.4
, pp. 1997-2022
-
-
Wehbe, L.1
Ramdas, A.2
Steorts, R.C.3
Shalizi, C.R.4
-
29
-
-
84875243337
-
Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes
-
Austin PC, Tu JV, Ho JE, Levy D, Lee DS. Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. Journal of Clinical Epidemiology 2013; 66(4): 398–407.
-
(2013)
Journal of Clinical Epidemiology
, vol.66
, Issue.4
, pp. 398-407
-
-
Austin, P.C.1
Tu, J.V.2
Ho, J.E.3
Levy, D.4
Lee, D.S.5
-
30
-
-
85014766911
-
Predicting mortality over different time horizons: which data elements are needed?
-
Goldstein BA, Pencina MJ, Montez-Rath ME, Winkelmayer WC. Predicting mortality over different time horizons: which data elements are needed?Journal of the American Medical Informatics Association 2017; 24(1): 176–181.
-
(2017)
Journal of the American Medical Informatics Association
, vol.24
, Issue.1
, pp. 176-181
-
-
Goldstein, B.A.1
Pencina, M.J.2
Montez-Rath, M.E.3
Winkelmayer, W.C.4
-
31
-
-
84958599888
-
Strategies for handling missing data in electronic health record derived data
-
Wells BJ, Chagin KM, Nowacki AS, Kattan MW. Strategies for handling missing data in electronic health record derived data. EGEMS 2013; 1(3): 1035.
-
(2013)
EGEMS
, vol.1
, Issue.3
, pp. 1035
-
-
Wells, B.J.1
Chagin, K.M.2
Nowacki, A.S.3
Kattan, M.W.4
|