메뉴 건너뛰기




Volumn 15, Issue 3, 2015, Pages 256-278

Cox regression models with functional covariates for survival data

Author keywords

Cox proportional hazards model; functional data analysis; intensive care unit; nonparametric statistics; Survival analysis

Indexed keywords


EID: 84930386213     PISSN: 1471082X     EISSN: 14770342     Source Type: Journal    
DOI: 10.1177/1471082X14565526     Document Type: Article
Times cited : (30)

References (59)
  • 1
    • 77953833620 scopus 로고    scopus 로고
    • BayesX: Software for Bayesian inference in structured additive regression models
    • Belitz C,Brezger A,Kneib T,Lang S,Umlauf N.BayesX: Software for Bayesian inference in structured additive regression models. 2013;:
    • (2013)
    • Belitz, C.1    Brezger, A.2    Kneib, T.3    Lang, S.4    Umlauf, N.5
  • 2
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • Bender R,Augustin T,Blettner M.Generating survival times to simulate Cox proportional hazards models.Statistics in medicine. 2005;24:1713-23
    • (2005) Statistics in medicine , vol.24 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 6
    • 0042334736 scopus 로고    scopus 로고
    • Hazard regression for interval-censored data with penalized spline
    • T Cai,RA Betensky.Hazard regression for interval-censored data with penalized spline.Biometrics. 2003;59:570-79
    • (2003) Biometrics , vol.59 , pp. 570-579
    • Cai, T.1    Betensky, R.A.2
  • 7
    • 0041459525 scopus 로고    scopus 로고
    • Spline estimators for the functional linear model
    • Cardot H,F Ferraty,Sarda P.Spline estimators for the functional linear model.Statistica Sinica. 2003;13:571-91
    • (2003) Statistica Sinica , vol.13 , pp. 571-591
    • Cardot, H.1    Ferraty, F.2    Sarda, P.3
  • 8
    • 6444240715 scopus 로고    scopus 로고
    • Estimation in generalized linear models for functional data via penalized likelihood
    • H Cardot,Sarda P.Estimation in generalized linear models for functional data via penalized likelihood.Journal of Multivariate Analysis. 2005;92:24-41
    • (2005) Journal of Multivariate Analysis , vol.92 , pp. 24-41
    • Cardot, H.1    Sarda, P.2
  • 10
    • 0023092594 scopus 로고
    • A new method of classifying prognostic comorbidity in longitudinal stu- dies: development and validation
    • Charlson ME,Pompei P,KL Ales,MacKenzie CR.A new method of classifying prognostic comorbidity in longitudinal stu- dies: development and validation.Journal Of Chronic Diseases. 1987;:373-83
    • (1987) Journal Of Chronic Diseases , pp. 373-383
    • Charlson, M.E.1    Pompei, P.2    Ales, K.L.3    MacKenzie, C.R.4
  • 11
    • 66549091332 scopus 로고    scopus 로고
    • Modeling hazard rates as functional data for the analysis of cohort lifetables and mortality forecasting
    • J Chiou,Müller H.Modeling hazard rates as functional data for the analysis of cohort lifetables and mortality forecasting.Journal of the American Statistical Association. 2009;104:572-85
    • (2009) Journal of the American Statistical Association , vol.104 , pp. 572-585
    • Chiou, J.1    Müller, H.2
  • 13
    • 84867490161 scopus 로고    scopus 로고
    • Bootstrap-based inference on the difference in the means of two correlated functional processes
    • Crainiceanu CM,Staicu AM,S Ray,Punjabi N.Bootstrap-based inference on the difference in the means of two correlated functional processes.Statistics in medicine. 2012a;31:3223-40
    • (2012) Statistics in medicine , vol.31 , pp. 3223-3240
    • Crainiceanu, C.M.1    Staicu, A.M.2    Ray, S.3    Punjabi, N.4
  • 14
    • 84930406716 scopus 로고    scopus 로고
    • Refund: regression with functional data
    • CrainiceanuCReissPGoldsmithJHuangLHuoLScheiplFGrevenSHarezlakJKunduMZhaoY
    • CrainiceanuCReissPGoldsmithJHuangLHuoLScheiplFGrevenSHarezlakJKunduMZhaoY (2012b) Refund: regression with functional data, R package version 0.1–6.
    • (2012) R package version , pp. 1-6
  • 15
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • PHC Eilers,BD Marx.Flexible smoothing with B-splines and penalties.Statistical Science. 1996;11:89-121
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 18
    • 84919819684 scopus 로고    scopus 로고
    • GellarJEColantuoniEDMNeedhamCMCrainiceanu (2014) Variable-domain functional regression for modeling ICU data. Journal of the American Statistical Association, 109(508), 1425–39. 10.1080/01621459.2014.940044
    • GellarJEColantuoniEDMNeedhamCMCrainiceanu (2014) Variable-domain functional regression for modeling ICU data. Journal of the American Statistical Association, 109(508), 1425–39. 10.1080/01621459.2014.940044http://biostats.bepress.com/jhubiostat/paper261.
  • 20
    • 70449647008 scopus 로고
    • Proportional hazards tests and diagnostics based on weighted residuals
    • P Grambsch,Therneau T. Proportional hazards tests and diagnostics based on weighted residuals.Biometrika. 1994;81:515-26
    • (1994) Biometrika , vol.81 , pp. 515-526
    • Grambsch, P.1    Therneau, T.2
  • 21
    • 21144472187 scopus 로고
    • Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis
    • Gray R.Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis.Journal of the American Statistical Association. 1992;87:942-51
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 942-951
    • Gray, R.1
  • 23
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE,KL Lee,DB Mark.Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors.Statistics in Medicine. 1996;15:361-87
    • (1996) Statistics in Medicine , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 27
    • 69049090897 scopus 로고    scopus 로고
    • Functional linear regression thats interpretable
    • James GM,J Wang,Zhu J.Functional linear regression thats interpretable.The Annals of Statistics. 2009;37:2083-108
    • (2009) The Annals of Statistics , vol.37 , pp. 2083-2108
    • James, G.M.1    Wang, J.2    Zhu, J.3
  • 28
    • 33847380991 scopus 로고    scopus 로고
    • A mixed model approach for geoadditive hazard regression
    • T Kneib,Fhrmeir L.A mixed model approach for geoadditive hazard regression.Scandinavian Journal of Statistics. 2007;34:207-28
    • (2007) Scandinavian Journal of Statistics , vol.34 , pp. 207-228
    • Kneib, T.1    Fhrmeir, L.2
  • 29
    • 0033079479 scopus 로고    scopus 로고
    • Generalized linear regression on sampled signals and curves: A P-spline approach
    • B Marx,Eilers P.Generalized linear regression on sampled signals and curves: A P-spline approach.Technometrics. 1999;41:1-13
    • (1999) Technometrics , vol.41 , pp. 1-13
    • Marx, B.1    Eilers, P.2
  • 31
    • 84901804822 scopus 로고    scopus 로고
    • Functional generalized additive models. Journal of Computational and Graphical Statistics, 23, 249–69, 130322113058003. ISSN 1061-8600
    • McLeanMWHookerGStaicuA.-M.FScheiplRuppertD
    • McLeanMWHookerGStaicuA.-M.FScheiplRuppertD (2013) Functional generalized additive models. Journal of Computational and Graphical Statistics, 23, 249–69, 130322113058003. ISSN 1061-8600. doi: 10.1080/10618600.2012.729985. http://www.tandfonline.com/doi/abs/10.1080/10618600.2012.729985.
    • (2013) doi: 10.1080/10618600.2012.729985
  • 32
    • 0000920665 scopus 로고
    • Regression with censored data
    • R Miller,Halpern J.Regression with censored data.Biometrika. 1982;69:521-31
    • (1982) Biometrika , vol.69 , pp. 521-531
    • Miller, R.1    Halpern, J.2
  • 34
    • 19744368468 scopus 로고    scopus 로고
    • Time-varying functional regression for predicting remaining lifetime distributions from longitudinal trajectories
    • Müller H,Zhang Y.Time-varying functional regression for predicting remaining lifetime distributions from longitudinal trajectories.Biometrics. 2005;61:1064-75
    • (2005) Biometrics , vol.61 , pp. 1064-1075
    • Müller, H.1    Zhang, Y.2
  • 35
    • 34447535589 scopus 로고    scopus 로고
    • Study protocol: The improving care of acute lung injury patients (ICAP) study. Critical care (London, England), 10, R9. ISSN 1466-609X
    • NeedhamDMDennisonCRDowdyDWMendez-TellezPaCieslaNDesaiSVSevranskyJShanholtzCScharfsteinDHerridgeMSPJPronovost
    • NeedhamDMDennisonCRDowdyDWMendez-TellezPaCieslaNDesaiSVSevranskyJShanholtzCScharfsteinDHerridgeMSPJPronovost (2006) Study protocol: The improving care of acute lung injury patients (ICAP) study. Critical care (London, England), 10, R9. ISSN 1466-609X. doi: 10.1186/cc3948. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1550857&tool=pmcentrez&rendertype=abstract.
    • (2006) doi: 10.1186/cc3948
  • 37
    • 0000716729 scopus 로고
    • Nonparametric estimation of relative risk using splines and cross-validation
    • O'Sullivan F.Nonparametric estimation of relative risk using splines and cross-validation.SIAM Journal on Scientific and Statistical Computing. 1988;9:531-42
    • (1988) SIAM Journal on Scientific and Statistical Computing , vol.9 , pp. 531-542
    • O'Sullivan, F.1
  • 38
    • 84930398857 scopus 로고    scopus 로고
    • R: a language and environment for statistical computing
    • R Development Core Team (2011) R: a language and environment for statistical computing. ISSN 16000706. http://www.r-project.org.
    • (2011) ISSN
    • Development Core Team, R.1
  • 41
    • 35348906983 scopus 로고    scopus 로고
    • Functional principal component regression and functional partial least squares
    • PT Reiss,RT Ogden.Functional principal component regression and functional partial least squares.Journal of the American Statistical Association. 2007;102:984-96
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 984-996
    • Reiss, P.T.1    Ogden, R.T.2
  • 42
    • 85020457303 scopus 로고    scopus 로고
    • RizopoulosD (2012) Joint models for longitudinal and time-to-event data: With applications in R. Boca Raton, FL: Chapman & Hall/CRC
    • RizopoulosD (2012) Joint models for longitudinal and time-to-event data: With applications in R. Boca Raton, FL: Chapman & Hall/CRC. http://books.google.com/books?hl=en&lr=&id=xotIpb2duaMC&oi=fnd&pg=PP1&dq=Joint+Models+for+Longitudinal+and+Time-to-Event+Data:+With+Applications+in+R&ots=ODo7KlbUmd&sig=fsARbJp2SJbuUxcWx_GOjRUHrUQ.
  • 44
    • 0018547414 scopus 로고
    • A simple method for regression analysis with censored data
    • J Schmee,Hahn G.A simple method for regression analysis with censored data.Technometrics. 1979;21:417-32
    • (1979) Technometrics , vol.21 , pp. 417-432
    • Schmee, J.1    Hahn, G.2
  • 45
    • 84930407786 scopus 로고    scopus 로고
    • Longitudinal analysis of spatiotemporal processes: a case study of dynamic contrast-enhanced magnetic resonance imaging in multiple sclerosis
    • ShinoharaRCrainiceanuCBCaffoReichD
    • ShinoharaRCrainiceanuCBCaffoReichD (2011) Longitudinal analysis of spatiotemporal processes: a case study of dynamic contrast-enhanced magnetic resonance imaging in multiple sclerosis. Technical Report September 2011. http://biostats.bepress.com/jhubiostat/paper231/.
    • (2011) Technical Report September , pp. 2011
  • 47
    • 57049173410 scopus 로고    scopus 로고
    • Use of penalized splines in extended Cox-type additive hazard regression to flexibly estimate the effect of time-varying serum uric acid on risk of cancer incidence: a prospective, population-based study in 78,850 men
    • Strasak A,Lang S,T Kneib,Brant L.Use of penalized splines in extended Cox-type additive hazard regression to flexibly estimate the effect of time-varying serum uric acid on risk of cancer incidence: a prospective, population-based study in 78,850 men.Annals of Epidemiology. 2009;19:15-24
    • (2009) Annals of Epidemiology , vol.19 , pp. 15-24
    • Strasak, A.1    Lang, S.2    Kneib, T.3    Brant, L.4
  • 53
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: an overview
    • A Tsiatis,Davidian M.Joint modeling of longitudinal and time-to-event data: an overview.Statistica Sinica. 2004;14:809-34
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.1    Davidian, M.2
  • 57
    • 0041332955 scopus 로고    scopus 로고
    • Shrinkage estimation for functional principal component scores with application to the population kinetics of plasma folate
    • Yao F,Müller H-G,Clifford AJ,Dueker SR,Follett J,Lin Y,Buchholz Ba,JS Vogel.Shrinkage estimation for functional principal component scores with application to the population kinetics of plasma folate.Biometrics. 2003;59:676-85
    • (2003) Biometrics , vol.59 , pp. 676-685
    • Yao, F.1    Müller, H.-G.2    Clifford, A.J.3    Dueker, S.R.4    Follett, J.5    Lin, Y.6    Buchholz, B.7    Vogel, J.S.8
  • 58
    • 43649105058 scopus 로고    scopus 로고
    • Mortality rates for patients with acute lung injury/ARDS have decreased over time
    • M Zambon,Vincent J-L.Mortality rates for patients with acute lung injury/ARDS have decreased over time.Chest. 2008;133:1120-27
    • (2008) Chest , vol.133 , pp. 1120-1127
    • Zambon, M.1    Vincent, J.-L.2
  • 59
    • 0000438323 scopus 로고
    • Nonparametric survival analysis with time-dependent covariate effects: a penalized partial likelihood approach
    • D Zucker,Karr A.Nonparametric survival analysis with time-dependent covariate effects: a penalized partial likelihood approach.The Annals of Statistics. 1990;18:329-53
    • (1990) The Annals of Statistics , vol.18 , pp. 329-353
    • Zucker, D.1    Karr, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.