메뉴 건너뛰기




Volumn 55, Issue 7, 2017, Pages 4032-4046

A sparse and low-rank near-isometric linear embedding method for feature extraction in hyperspectral imagery classification

Author keywords

Classification; Dimensionality reduction; Feature extraction; Hyperspectral imagery (HSI); Sparse and low rank near isometric linear embedding (SLRNILE)

Indexed keywords

COMPUTATION THEORY; CONVEX OPTIMIZATION; EXTRACTION; FEATURE EXTRACTION; IMAGE CLASSIFICATION; LAGRANGE MULTIPLIERS; LINEAR PROGRAMMING; MAPPING; MATRIX ALGEBRA; PRINCIPAL COMPONENT ANALYSIS; REMOTE SENSING; SPECTROSCOPY;

EID: 85018522896     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2686842     Document Type: Article
Times cited : (103)

References (52)
  • 2
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • Jan
    • G. Camps-Valls, D. Tuia, L. Bruzzone, and J. A. Benediktsson, "Advances in hyperspectral image classification: Earth monitoring with statistical learning methods," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 45-54, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Benediktsson, J.A.4
  • 3
    • 84975453750 scopus 로고    scopus 로고
    • Mapping of land cover in northern California with simulated hyperspectral satellite imagery
    • Sep
    • M. L. Clark and N. E. Kilham, "Mapping of land cover in northern California with simulated hyperspectral satellite imagery," ISPRS J. Photogramm. Remote Sens., vol. 119, pp. 228-245, Sep. 2016.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.119 , pp. 228-245
    • Clark, M.L.1    Kilham, N.E.2
  • 4
    • 84889672730 scopus 로고    scopus 로고
    • Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping
    • L. Demarchi, F. Canters, C. Cariou, G. Licciardi, and J. C.-W. Chan, "Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping," ISPRS J. Photogramm. Remote Sens., vol. 87, pp. 166-179, 2014.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.87 , pp. 166-179
    • Demarchi, L.1    Canters, F.2    Cariou, C.3    Licciardi, G.4    Chan, J.C.-W.5
  • 5
    • 84962135683 scopus 로고    scopus 로고
    • Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture
    • Jun.
    • P. Zarco-Tejada, M. González-Dugo, and E. Fereres, "Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture," Remote Sens. Environ., vol. 179, pp. 89-103, Jun. 2016.
    • (2016) Remote Sens. Environ. , vol.179 , pp. 89-103
    • Zarco-Tejada, P.1    González-Dugo, M.2    Fereres, E.3
  • 6
    • 85027951032 scopus 로고    scopus 로고
    • Generation of spectral-Temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications
    • Jun.
    • C. M. Gevaert, J. Suomalainen, J. Tang, and L. Kooistra, "Generation of spectral-Temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 3140-3146, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 3140-3146
    • Gevaert, C.M.1    Suomalainen, J.2    Tang, J.3    Kooistra, L.4
  • 7
    • 84904872439 scopus 로고    scopus 로고
    • Mapping of NiCu-PGE ore hosting ultramafic rocks using airborne and simulated EnMAP hyperspectral imagery, Nunavik, Canada
    • Sep
    • D. Rogge, B. Rivard, K. Segl, B. Grant, and J. Feng, "Mapping of NiCu-PGE ore hosting ultramafic rocks using airborne and simulated EnMAP hyperspectral imagery, Nunavik, Canada," Remote Sens. Environ., vol. 152, pp. 302-317, Sep. 2014.
    • (2014) Remote Sens. Environ. , vol.152 , pp. 302-317
    • Rogge, D.1    Rivard, B.2    Segl, K.3    Grant, B.4    Feng, J.5
  • 8
    • 84960366706 scopus 로고    scopus 로고
    • Automated lithological mapping using airborne hyperspectral thermal infrared data: A case study from Anchorage Island, Antarctica
    • Apr
    • M. Black, T. R. Riley, G. Ferrier, A. H. Fleming, and P. T. Fretwell, "Automated lithological mapping using airborne hyperspectral thermal infrared data: A case study from Anchorage Island, Antarctica," Remote Sens. Environ., vol. 176, pp. 225-241, Apr. 2016.
    • (2016) Remote Sens. Environ. , vol.176 , pp. 225-241
    • Black, M.1    Riley, T.R.2    Ferrier, G.3    Fleming, A.H.4    Fretwell, P.T.5
  • 9
    • 84938981279 scopus 로고    scopus 로고
    • Hyperspectral discrimination of floating mats of seagrass wrack and the macroalgae Sargassum in coastal waters of Greater Florida Bay using airborne remote sensing
    • Sep
    • H. Dierssen, A. Chlus, and B. Russell, "Hyperspectral discrimination of floating mats of seagrass wrack and the macroalgae Sargassum in coastal waters of Greater Florida Bay using airborne remote sensing," Remote Sens. Environ., vol. 167, pp. 247-258, Sep. 2015.
    • (2015) Remote Sens. Environ. , vol.167 , pp. 247-258
    • Dierssen, H.1    Chlus, A.2    Russell, B.3
  • 10
    • 84954489198 scopus 로고    scopus 로고
    • Hyperspectral field estimation and remote-sensing inversion of salt content in coastal saline soils of the Yellow River Delta
    • D. An et al., "Hyperspectral field estimation and remote-sensing inversion of salt content in coastal saline soils of the Yellow River Delta," Int. J. Remote Sens., vol. 37, no. 2, pp. 455-470, 2016.
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.2 , pp. 455-470
    • An, D.1
  • 11
    • 84893068247 scopus 로고    scopus 로고
    • UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification
    • Mar.
    • W. Sun et al., "UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification," ISPRS J. Photogramm. Remote Sens., vol. 89, pp. 25-36, Mar. 2014.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.89 , pp. 25-36
    • Sun, W.1
  • 12
    • 84981724952 scopus 로고    scopus 로고
    • Firefly-Algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification
    • Jan
    • H. Su, Y. Cai, and Q. Du, "Firefly-Algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 1, pp. 309-320, Jan. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.1 , pp. 309-320
    • Su, H.1    Cai, Y.2    Du, Q.3
  • 13
    • 84931572289 scopus 로고    scopus 로고
    • Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
    • Oct
    • L. Zhang, Q. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du, "Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding," Pattern Recognit., vol. 48, no. 10, pp. 3102-3112, Oct. 2015.
    • (2015) Pattern Recognit. , vol.48 , Issue.10 , pp. 3102-3112
    • Zhang, L.1    Zhang, Q.2    Zhang, L.3    Tao, D.4    Huang, X.5    Du, B.6
  • 14
    • 84976320482 scopus 로고    scopus 로고
    • Tangent distance-based collaborative representation for hyperspectral image classification
    • Sep
    • H. Su, B. Zhao, Q. Du, and Y. Sheng, "Tangent distance-based collaborative representation for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 9, pp. 1236-1240, Sep. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.9 , pp. 1236-1240
    • Su, H.1    Zhao, B.2    Du, Q.3    Sheng, Y.4
  • 15
    • 1942424158 scopus 로고    scopus 로고
    • Principal component analysis for hyperspectral image classification
    • C. Rodarmel and J. Shan, "Principal component analysis for hyperspectral image classification," Surv. Land Inf. Sci., vol. 62, no. 2, p. 115, 2002.
    • (2002) Surv. Land Inf. Sci. , vol.62 , Issue.2 , pp. 115
    • Rodarmel, C.1    Shan, J.2
  • 16
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • Jan
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988.
    • (1988) IEEE Trans. Geosci. Remote Sens. , vol.26 , Issue.1 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 17
    • 84905912652 scopus 로고    scopus 로고
    • Optimized hyperspectral band selection using particle swarm optimization
    • Jun.
    • H. Su, Q. Du, G. Chen, and P. Du, "Optimized hyperspectral band selection using particle swarm optimization," IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens., vol. 7, no. 6, pp. 2659-2670, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. , vol.7 , Issue.6 , pp. 2659-2670
    • Su, H.1    Du, Q.2    Chen, G.3    Du, P.4
  • 18
  • 19
    • 84939542542 scopus 로고    scopus 로고
    • Dimensionality reduction via regression in hyperspectral imagery
    • Sep
    • V. Laparra, J. Malo, and G. Camps-Valls, "Dimensionality reduction via regression in hyperspectral imagery," IEEE J. Sel. Topics Signal Process., vol. 9, no. 6, pp. 1026-1036, Sep. 2015.
    • (2015) IEEE J. Sel. Topics Signal Process. , vol.9 , Issue.6 , pp. 1026-1036
    • Laparra, V.1    Malo, J.2    Camps-Valls, G.3
  • 20
    • 84941929639 scopus 로고    scopus 로고
    • Spatial regularized local manifold learning for classification of hyperspectral images
    • Feb
    • L. Ma, X. Zhang, X. Yu, and D. Luo, "Spatial regularized local manifold learning for classification of hyperspectral images," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 2, pp. 609-624, Feb. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.9 , Issue.2 , pp. 609-624
    • Ma, L.1    Zhang, X.2    Yu, X.3    Luo, D.4
  • 21
    • 84921027070 scopus 로고    scopus 로고
    • Local-manifoldlearning-based graph construction for semisupervised hyperspectral image classification
    • May
    • L. Ma, M. M. Crawford, X. Yang, and Y. Guo, "Local-manifoldlearning-based graph construction for semisupervised hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2832-2844, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2832-2844
    • Ma, L.1    Crawford, M.M.2    Yang, X.3    Guo, Y.4
  • 22
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, 2003.
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 23
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Dec
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 24
    • 84870927938 scopus 로고    scopus 로고
    • Selection of landmark points on nonlinear manifolds for spectral unmixing using local homogeneity
    • Jul
    • J. Chi and M. M. Crawford, "Selection of landmark points on nonlinear manifolds for spectral unmixing using local homogeneity," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 4, pp. 711-715, Jul. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.4 , pp. 711-715
    • Chi, J.1    Crawford, M.M.2
  • 25
  • 28
    • 84905922593 scopus 로고    scopus 로고
    • A nonlocal weighted joint sparse representation classification method for hyperspectral imagery
    • Jun.
    • H. Zhang, J. Li, Y. Huang, and L. Zhang, "A nonlocal weighted joint sparse representation classification method for hyperspectral imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2056-2065, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2056-2065
    • Zhang, H.1    Li, J.2    Huang, Y.3    Zhang, L.4
  • 29
    • 84906283945 scopus 로고    scopus 로고
    • Spatialaware dictionary learning for hyperspectral image classification
    • Jan
    • A. Soltani-Farani, H. R. Rabiee, and S. A. Hosseini, "Spatialaware dictionary learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 527-541, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.1 , pp. 527-541
    • Soltani-Farani, A.1    Rabiee, H.R.2    Hosseini, S.A.3
  • 30
    • 84948659583 scopus 로고    scopus 로고
    • Discriminative nonnegative matrix factorization for dimensionality reduction
    • Jan
    • M. Babaee, S. Tsoukalas, M. Babaee, G. Rigoll, and M. Datcu, "Discriminative nonnegative matrix factorization for dimensionality reduction," Neurocomputing, vol. 173, pp. 212-223, Jan. 2016.
    • (2016) Neurocomputing , vol.173 , pp. 212-223
    • Babaee, M.1    Tsoukalas, S.2    Babaee, M.3    Rigoll, G.4    Datcu, M.5
  • 31
    • 84875464419 scopus 로고    scopus 로고
    • Sparse nonnegative matrix underapproximation and its application to hyperspectral image analysis
    • May
    • N. Gillis and R. J. Plemmons, "Sparse nonnegative matrix underapproximation and its application to hyperspectral image analysis," Linear Algebra Appl., vol. 438, no. 10, pp. 3991-4007, May 2013.
    • (2013) Linear Algebra Appl. , vol.438 , Issue.10 , pp. 3991-4007
    • Gillis, N.1    Plemmons, R.J.2
  • 32
    • 84959526685 scopus 로고    scopus 로고
    • Joint group sparse PCA for compressed hyperspectral imaging
    • Dec
    • Z. Khan, F. Shafait, and A. Mian, "Joint group sparse PCA for compressed hyperspectral imaging," IEEE Trans. Image Process., vol. 24, no. 12, pp. 4934-4942, Dec. 2015.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.12 , pp. 4934-4942
    • Khan, Z.1    Shafait, F.2    Mian, A.3
  • 33
    • 85027948694 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral images with sparse discriminant embedding
    • Sep
    • H. Huang and M. Yang, "Dimensionality reduction of hyperspectral images with sparse discriminant embedding," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 9, pp. 5160-5169, Sep. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.9 , pp. 5160-5169
    • Huang, H.1    Yang, M.2
  • 34
    • 84891011267 scopus 로고    scopus 로고
    • Sparse transfer manifold embedding for hyperspectral target detection
    • Feb
    • L. Zhang, L. Zhang, D. Tao, and X. Huang, "Sparse transfer manifold embedding for hyperspectral target detection," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1030-1043, Feb. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.2 , pp. 1030-1043
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 36
    • 84924370444 scopus 로고    scopus 로고
    • A framework of joint graph embedding and sparse regression for dimensionality reduction
    • Apr
    • X. Shi, Z. Guo, Z. Lai, Y. Yang, Z. Bao, and D. Zhang, "A framework of joint graph embedding and sparse regression for dimensionality reduction," IEEE Trans. Image Process., vol. 24, no. 4, pp. 1341-1355, Apr. 2015.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.4 , pp. 1341-1355
    • Shi, X.1    Guo, Z.2    Lai, Z.3    Yang, Y.4    Bao, Z.5    Zhang, D.6
  • 37
    • 84929616566 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral images based on sparse discriminant manifold embedding
    • Aug
    • H. Huang, F. Luo, J. Liu, and Y. Yang, "Dimensionality reduction of hyperspectral images based on sparse discriminant manifold embedding," ISPRS J. Photogramm. Remote Sens., vol. 106, pp. 42-54, Aug. 2015.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.106 , pp. 42-54
    • Huang, H.1    Luo, F.2    Liu, J.3    Yang, Y.4
  • 38
    • 84872908191 scopus 로고    scopus 로고
    • Classification and reconstruction from random projections for hyperspectral imagery
    • Feb
    • W. Li, S. Prasad, and J. E. Fowler, "Classification and reconstruction from random projections for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 833-843, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 833-843
    • Li, W.1    Prasad, S.2    Fowler, J.E.3
  • 39
    • 84890433804 scopus 로고    scopus 로고
    • Reconstruction of hyperspectral imagery from random projections using multihypothesis prediction
    • Jan
    • C. Chen, W. Li, E. W. Tramel, and J. E. Fowler, "Reconstruction of hyperspectral imagery from random projections using multihypothesis prediction," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 365-374, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 365-374
    • Chen, C.1    Li, W.2    Tramel, E.W.3    Fowler, J.E.4
  • 40
    • 0001654702 scopus 로고
    • Extensions of Lipschitz mappings into a Hilbert space
    • W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space," Contemp. Math., vol. 26, pp. 189-206, 1984.
    • (1984) Contemp. Math. , vol.26 , pp. 189-206
    • Johnson, W.B.1    Lindenstrauss, J.2
  • 41
    • 84959326453 scopus 로고    scopus 로고
    • NuMax: A convex approach for learning near-isometric linear embeddings
    • Nov
    • C. Hegde, A. C. Sankaranarayanan, W. Yin, and R. G. Baraniuk, "NuMax: A convex approach for learning near-isometric linear embeddings," IEEE Trans. Signal Process., vol. 63, no. 22, pp. 6109-6121, Nov. 2015.
    • (2015) IEEE Trans. Signal Process. , vol.63 , Issue.22 , pp. 6109-6121
    • Hegde, C.1    Sankaranarayanan, A.C.2    Yin, W.3    Baraniuk, R.G.4
  • 42
    • 0345376932 scopus 로고    scopus 로고
    • Problems and results in extremal combinatorics-I
    • Dec
    • N. Alon, "Problems and results in extremal combinatorics-I," Discrete Math., vol. 273, nos. 1-3, pp. 31-53, Dec. 2003.
    • (2003) Discrete Math. , vol.273 , Issue.1-3 , pp. 31-53
    • Alon, N.1
  • 43
    • 21844447809 scopus 로고    scopus 로고
    • Dimensionality reduction using secant-based projection methods: The induced dynamics in projected systems
    • Aug
    • D. S. Broomhead and M. J. Kirby, "Dimensionality reduction using secant-based projection methods: The induced dynamics in projected systems," Nonlinear Dyn., vol. 41, no. 1, pp. 47-67, Aug. 2005.
    • (2005) Nonlinear Dyn. , vol.41 , Issue.1 , pp. 47-67
    • Broomhead, D.S.1    Kirby, M.J.2
  • 44
    • 79960436599 scopus 로고    scopus 로고
    • New and improved Johnson-Lindenstrauss embeddings via the restricted isometry property
    • F. Krahmer and R. Ward, "New and improved Johnson-Lindenstrauss embeddings via the restricted isometry property," SIAM J. Math. Anal., vol. 43, no. 3, pp. 1269-1281, 2011.
    • (2011) SIAM J. Math. Anal. , vol.43 , Issue.3 , pp. 1269-1281
    • Krahmer, F.1    Ward, R.2
  • 45
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Apr
    • D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 47
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution
    • Jun.
    • D. L. Donoho, "For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution," Commun. Pure Appl. Math., vol. 59, no. 6, pp. 797-829, Jun. 2006.
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.L.1
  • 48
    • 84963575156 scopus 로고    scopus 로고
    • A dissimilarity-weighted sparse self-representation method for band selection in hyperspectral imagery classification
    • Sep
    • W. Sun, L. Zhang, L. Zhang, and Y. M. Lai, "A dissimilarity-weighted sparse self-representation method for band selection in hyperspectral imagery classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 9, pp. 4374-4388, Sep. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.9 , Issue.9 , pp. 4374-4388
    • Sun, W.1    Zhang, L.2    Zhang, L.3    Lai, Y.M.4
  • 49
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Jan
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122, Jan. 2011.
    • (2011) Found. Trends Mach. Learn. , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 52
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • M. Pal, "Random forest classifier for remote sensing classification," Int. J. Remote Sens., vol. 26, no. 1, pp. 217-222, 2005.
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.