메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Quantifying self-reported adverse drug events on Twitter: Signal and topic analysis

Author keywords

Classification; Drug side effects; Natural Language Processing; Text Mining; Twitter

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; DRUG INTERACTIONS; ECOSYSTEMS; FILTRATION; INTERACTIVE COMPUTER SYSTEMS; LEARNING ALGORITHMS; NATURAL LANGUAGE PROCESSING SYSTEMS; PIPELINE PROCESSING SYSTEMS; REAL TIME SYSTEMS; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES; TEXT PROCESSING;

EID: 85018438197     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2930971.2930977     Document Type: Conference Paper
Times cited : (15)

References (35)
  • 2
    • 0031958298 scopus 로고    scopus 로고
    • The unified medical language system: Toward a collaborative approach for solving terminological problems
    • K.E. Campbell, D.E. Oliver, and E.H. Shortliffe. The Unified Medical Language System: Toward a Collaborative Approach for Solving Terminological Problems. J. Am. Med. Inform. Assoc., 5:12-16, 1998.
    • (1998) J. Am. Med. Inform. Assoc. , vol.5 , pp. 12-16
    • Campbell, K.E.1    Oliver, D.E.2    Shortliffe, E.H.3
  • 3
    • 79955702502 scopus 로고    scopus 로고
    • LiBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2(3):27:1-27:27, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 4
  • 5
    • 0035700740 scopus 로고    scopus 로고
    • Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports
    • S.J.W. Evans, P.C. Waller, and S. Davis. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiology and Drug Safety, 10:483-486, 2001.
    • (2001) Pharmacoepidemiology and Drug Safety , vol.10 , pp. 483-486
    • Evans, S.J.W.1    Waller, P.C.2    Davis, S.3
  • 8
    • 84975190542 scopus 로고    scopus 로고
    • Handbook of inter-rater reliability
    • 4th edition
    • K.L. Gwet. Handbook of Inter-Rater Reliability. Advanced Analytics LLC, 4th edition, 2014.
    • (2014) Advanced Analytics LLC
    • Gwet, K.L.1
  • 10
    • 33646744337 scopus 로고    scopus 로고
    • Under-reporting of adverse drug reactions
    • L. Hazell and S.A.W. Shakir. Under-Reporting of Adverse Drug Reactions. Drug Safety, 29(5):385-396, 2006.
    • (2006) Drug Safety , vol.29 , Issue.5 , pp. 385-396
    • Hazell, L.1    Shakir, S.A.W.2
  • 12
    • 84930167492 scopus 로고    scopus 로고
    • Text and data mining techniques in adverse drug reaction detection
    • S. Karimi, C. Wang, A. Metke-Jimenez, R. Gaire, and C. Paris. Text and data mining techniques in adverse drug reaction detection. ACM Comput. Surv., 47(4):56:1-56:39, 2015.
    • (2015) ACM Comput. Surv. , vol.47 , Issue.4 , pp. 561-5639
    • Karimi, S.1    Wang, C.2    Metke-Jimenez, A.3    Gaire, R.4    Paris, C.5
  • 14
    • 0017360990 scopus 로고
    • The measurement of observer agreement for categorical data
    • J.R. Landis and G.G. Koch. The measurement of observer agreement for categorical data. Biometrics, 33(1):159-174, 1977.
    • (1977) Biometrics , vol.33 , Issue.1 , pp. 159-174
    • Landis, J.R.1    Koch, G.G.2
  • 20
    • 84874210162 scopus 로고    scopus 로고
    • Pattern mining for extraction of mentions of adverse drug reactions from user comments
    • A. Nikfarjam and G.H. Gonzalez. Pattern mining for extraction of mentions of adverse drug reactions from user comments. In AMIA Annual Symposium Proceedings, pages 1019-1026, 2011.
    • (2011) AMIA Annual Symposium Proceedings , pp. 1019-1026
    • Nikfarjam, A.1    Gonzalez, G.H.2
  • 21
    • 84927943705 scopus 로고    scopus 로고
    • Pharmacovigilance from social media: Mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
    • A. Nikfarjam, A. Sarker, K. O'Connor, R. Ginn, and G. Gonzalez. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J. Am. Med. Inform. Assoc., 22:671-681, 2015.
    • (2015) J. Am. Med. Inform. Assoc. , vol.22 , pp. 671-681
    • Nikfarjam, A.1    Sarker, A.2    O'Connor, K.3    Ginn, R.4    Gonzalez, G.5
  • 24
    • 84924285421 scopus 로고    scopus 로고
    • Portable automatic text classification for adverse drug reaction detection via multi-corpus training
    • A. Sarker and G. Gonzalez. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. Journal of Biomedical Informatics, 53:196-207, 2015.
    • (2015) Journal of Biomedical Informatics , vol.53 , pp. 196-207
    • Sarker, A.1    Gonzalez, G.2
  • 27
    • 0001319997 scopus 로고
    • Diversity of decision-making models and the measurement of interrated agreement
    • J.S. Uebersax. Diversity of decision-making models and the measurement of interrated agreement. Phychological Bulletin, 101(1):140-146, 1987.
    • (1987) Phychological Bulletin , vol.101 , Issue.1 , pp. 140-146
    • Uebersax, J.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.