-
1
-
-
0033931867
-
Assessing the accuracy of prediction algorithms for classification: an overview
-
[1] Baldi, P., Brunak, S., Chauvin, Y., Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:5 (2000), 412–424.
-
(2000)
Bioinformatics
, vol.16
, Issue.5
, pp. 412-424
-
-
Baldi, P.1
Brunak, S.2
Chauvin, Y.3
-
2
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
[2] Batista, G.E., Prati, R.C., Monard, M.C., A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsl., 6(1), 2004, 20, 10.1145/1007730.1007735.
-
(2004)
ACM SIGKDD Explorations Newsl.
, vol.6
, Issue.1
, pp. 20
-
-
Batista, G.E.1
Prati, R.C.2
Monard, M.C.3
-
3
-
-
67650694660
-
Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique
-
[3] Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C., Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique. Adv. Knowl. Discov. Data Min., 2009, 475–482.
-
(2009)
Adv. Knowl. Discov. Data Min.
, pp. 475-482
-
-
Bunkhumpornpat, C.1
Sinapiromsaran, K.2
Lursinsap, C.3
-
4
-
-
0346586663
-
SMOTE: synthetic minority over-sampling technique
-
[4] Chawla, N.V., Bowyer, K.W., Hall, L.O., Philip, W., SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16 (2002), 321–357.
-
(2002)
J. Artif. Intell. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Philip, W.4
-
5
-
-
3543135271
-
Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
-
[5] D'Agostino, R.B., Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat. Med. 2281 (1998), 2265–2281.
-
(1998)
Stat. Med.
, vol.2281
, pp. 2265-2281
-
-
D'Agostino, R.B.1
-
6
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
[6] Demšar, J., Demšar, J., Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006), 1–30, 10.1016/j.jecp.2010.03.005.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
Demšar, J.2
-
8
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
[8] Estabrooks, A., Jo, T., Japkowicz, N., A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20:1 (2004), 18–36, 10.1111/j.0824-7935.2004.t01-1-00228.x.
-
(2004)
Comput. Intell.
, vol.20
, Issue.1
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
9
-
-
85037992344
-
Addressing the classification with imbalanced data: open problems and new challenges on class distribution
-
[9] Fernández, A., García, S., Herrera, F., Addressing the classification with imbalanced data: open problems and new challenges on class distribution. Hybrid Artif. Intell. Syst., 2011, 1–10.
-
(2011)
Hybrid Artif. Intell. Syst.
, pp. 1-10
-
-
Fernández, A.1
García, S.2
Herrera, F.3
-
10
-
-
84881548984
-
Certainty-based active learning for sampling imbalanced datasets
-
[10] Fu, J., Lee, S., Certainty-based active learning for sampling imbalanced datasets. Neurocomputing 119 (2013), 350–358, 10.1016/j.neucom.2013.03.023.
-
(2013)
Neurocomputing
, vol.119
, pp. 350-358
-
-
Fu, J.1
Lee, S.2
-
11
-
-
77549084648
-
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
-
[11] García, S., Fernández, A., Luengo, J., Herrera, F., Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180:10 (2010), 2044–2064, 10.1016/j.ins.2009.12.010.
-
(2010)
Inf. Sci.
, vol.180
, Issue.10
, pp. 2044-2064
-
-
García, S.1
Fernández, A.2
Luengo, J.3
Herrera, F.4
-
12
-
-
80052394779
-
On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
-
[12] García, V., Sánchez, J., Mollineda, R.A., On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl. Based Syst. 25:1 (2012), 13–21, 10.1016/j.knosys.2011.06.013.
-
(2012)
Knowl. Based Syst.
, vol.25
, Issue.1
, pp. 13-21
-
-
García, V.1
Sánchez, J.2
Mollineda, R.A.3
-
13
-
-
27144479454
-
Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach
-
[13] Guo, H., Viktor, H.L., Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. ACM SIGKDD Explorations Newsl. 6:1 (2004), 30–39.
-
(2004)
ACM SIGKDD Explorations Newsl.
, vol.6
, Issue.1
, pp. 30-39
-
-
Guo, H.1
Viktor, H.L.2
-
14
-
-
57649123451
-
On the class imbalance problem
-
[14] Guo, X., Yin, Y., Dong, C., Yang, G., Zhou, G., On the class imbalance problem. 2008 Fourth International Conference on Natural Computation, 2008, 192–201, 10.1109/ICNC.2008.871.
-
(2008)
2008 Fourth International Conference on Natural Computation
, pp. 192-201
-
-
Guo, X.1
Yin, Y.2
Dong, C.3
Yang, G.4
Zhou, G.5
-
15
-
-
27144501672
-
Borderline-SMOTE: a New Over-Sampling Method
-
[15] Han, H., Wang, W.-y., Mao, B.-h., Borderline-SMOTE: a New Over-Sampling Method. Advances in Intelligent Computing, 2005, 878–887.
-
(2005)
Advances in Intelligent Computing
, pp. 878-887
-
-
Han, H.1
Wang, W.-Y.2
Mao, B.-H.3
-
17
-
-
68549133155
-
Learning from imbalanced data
-
[17] He, H., Garcia, E.A., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21:9 (2009), 1263–1284, 10.1109/TKDE.2008.239.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
19
-
-
78649400133
-
An empirical study on ensemble selection for class-imbalance data sets
-
[19] Junfei, C., Qingfeng, W., Huailin, D., An empirical study on ensemble selection for class-imbalance data sets. 2010 5th International Conference on Computer Science & Education, 2010, 477–480, 10.1109/ICCSE.2010.5593573.
-
(2010)
2010 5th International Conference on Computer Science & Education
, pp. 477-480
-
-
Junfei, C.1
Qingfeng, W.2
Huailin, D.3
-
20
-
-
84878098426
-
The influence of class imbalance on cost-sensitive learning: an empirical study
-
[20] Liu, X.-y., Zhou, Z.-h., The influence of class imbalance on cost-sensitive learning: an empirical study. Sixth International Conference on Data Mining (ICDM’06), 2006, 970–974, 10.1109/ICDM.2006.158.
-
(2006)
Sixth International Conference on Data Mining (ICDM’06)
, pp. 970-974
-
-
Liu, X.-Y.1
Zhou, Z.-H.2
-
21
-
-
84883447718
-
An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics
-
[21] López, V., Fernández, A., García, S., Palade, V., Herrera, F., An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250 (2013), 113–141, 10.1016/j.ins.2013.07.007.
-
(2013)
Inf. Sci.
, vol.250
, pp. 113-141
-
-
López, V.1
Fernández, A.2
García, S.3
Palade, V.4
Herrera, F.5
-
22
-
-
84888645340
-
On the importance of the validation technique for classification with imbalanced datasets: addressing covariate shift when data is skewed
-
[22] López, V., Fernández, A., Herrera, F., On the importance of the validation technique for classification with imbalanced datasets: addressing covariate shift when data is skewed. Inf. Sci. 257 (2014), 1–13, 10.1016/j.ins.2013.09.038.
-
(2014)
Inf. Sci.
, vol.257
, pp. 1-13
-
-
López, V.1
Fernández, A.2
Herrera, F.3
-
23
-
-
79961188190
-
Local neighbourhood extension of SMOTE for mining imbalanced data
-
[23] MacIejewski, T., Stefanowski, J., Local neighbourhood extension of SMOTE for mining imbalanced data. IEEE SSCI 2011: Symposium Series on Computational Intelligence - CIDM 2011: 2011 IEEE Symposium on Computational Intelligence and Data Mining, 2011, 104–111, 10.1109/CIDM.2011.5949434.
-
(2011)
IEEE SSCI 2011: Symposium Series on Computational Intelligence - CIDM 2011: 2011 IEEE Symposium on Computational Intelligence and Data Mining
, pp. 104-111
-
-
MacIejewski, T.1
Stefanowski, J.2
-
24
-
-
35048878309
-
Learning with class skews and small disjuncts
-
[24] Prati, R., Batista, G., Monard, M., Learning with class skews and small disjuncts. Advances in Artificial Intelligence SBIA 2004, 2004, 296–306.
-
(2004)
Advances in Artificial Intelligence SBIA 2004
, pp. 296-306
-
-
Prati, R.1
Batista, G.2
Monard, M.3
-
25
-
-
84885636932
-
Learning from imbalanced data: evaluation matters
-
Springer Berlin Heidelberg
-
[25] Raeder, T., Forman, G., Chawla, N.V., Learning from imbalanced data: evaluation matters. Data Mining: Foundations and Intelligent Paradigms, 2012, Springer Berlin Heidelberg, 315–331.
-
(2012)
Data Mining: Foundations and Intelligent Paradigms
, pp. 315-331
-
-
Raeder, T.1
Forman, G.2
Chawla, N.V.3
-
26
-
-
84938099722
-
Safe Level OUPS for improving target concept learning in imbalanced data sets
-
[26] Rivera, W.A., Asparouhov, O., Safe Level OUPS for improving target concept learning in imbalanced data sets. IEEE SoutheastCon 2015, 2015.
-
(2015)
IEEE SoutheastCon 2015
-
-
Rivera, W.A.1
Asparouhov, O.2
-
27
-
-
84938084492
-
OUPS: a combined approach using SMOTE and propensity score matching
-
[27] Rivera, W.A., Goel, A., Kincaid, J.P., OUPS: a combined approach using SMOTE and propensity score matching. Proceedings of the 2014 13th International Conference on Machine Learning and Applications, 1, 2014, 424–427, 10.1109/ICMLA.2014.106.
-
(2014)
Proceedings of the 2014 13th International Conference on Machine Learning and Applications
, vol.1
, pp. 424-427
-
-
Rivera, W.A.1
Goel, A.2
Kincaid, J.P.3
-
28
-
-
84923328437
-
SMOTEIPF: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering
-
[28] Sáez, J.a., Luengo, J., Stefanowski, J., Herrera, F., SMOTEIPF: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf. Sci. 291 (2015), 184–203, 10.1016/j.ins.2014.08.051.
-
(2015)
Inf. Sci.
, vol.291
, pp. 184-203
-
-
Sáez, J.A.1
Luengo, J.2
Stefanowski, J.3
Herrera, F.4
-
29
-
-
67049152595
-
Boosting for learning multiple classes with imbalances class distribution
-
[29] Sun, Y., Kamel, M.S., Wang, Y., Boosting for learning multiple classes with imbalances class distribution. Proceedings - IEEE International Conference on Data Mining, ICDM, 2006, 592–602, 10.1109/ICDM.2006.29.
-
(2006)
Proceedings - IEEE International Conference on Data Mining, ICDM
, pp. 592-602
-
-
Sun, Y.1
Kamel, M.S.2
Wang, Y.3
-
30
-
-
84878457382
-
Handling imbalanced data sets with synthetic boundary data generation using bootstrap re-sampling and AdaBoost techniques
-
[30] Thanathamathee, P., Lursinsap, C., Handling imbalanced data sets with synthetic boundary data generation using bootstrap re-sampling and AdaBoost techniques. Pattern Recognit. Lett. 34:12 (2013), 1339–1347, 10.1016/j.patrec.2013.04.019.
-
(2013)
Pattern Recognit. Lett.
, vol.34
, Issue.12
, pp. 1339-1347
-
-
Thanathamathee, P.1
Lursinsap, C.2
-
31
-
-
79951771270
-
Imbalanced classification using support vector machine ensemble
-
[31] Tian, J., Gu, H., Liu, W., Imbalanced classification using support vector machine ensemble. Neural Comput. Appl. 20:2 (2010), 203–209, 10.1007/s00521-010-0349-9.
-
(2010)
Neural Comput. Appl.
, vol.20
, Issue.2
, pp. 203-209
-
-
Tian, J.1
Gu, H.2
Liu, W.3
-
32
-
-
84921279740
-
Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms
-
[32] Vorraboot, P., Rasmequan, S., Chinnasarn, K., Lursinsap, C., Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms. Neurocomputing 152 (2015), 429–443, 10.1016/j.neucom.2014.10.007.
-
(2015)
Neurocomputing
, vol.152
, pp. 429-443
-
-
Vorraboot, P.1
Rasmequan, S.2
Chinnasarn, K.3
Lursinsap, C.4
-
33
-
-
82555204641
-
Data mining and knowledge discovery handbook
-
[33] Weiss, G.M., Data mining and knowledge discovery handbook. Data Mining and Knowledge Discovery Handbook 1 (2010), 747–757, 10.1007/978-0-387-09823-4.
-
(2010)
Data Mining and Knowledge Discovery Handbook
, vol.1
, pp. 747-757
-
-
Weiss, G.M.1
-
34
-
-
77956198600
-
The impact of small disjuncts on classifier learning
-
R. Stahlbock S.F. Crone S. Lessmann Springer US Boston, MA
-
[34] Weiss, G.M., The impact of small disjuncts on classifier learning. Stahlbock, R., Crone, S.F., Lessmann, S., (eds.) Data Mining Annals of Information Systems, 8, 2010, Springer US, Boston, MA, 193–226, 10.1007/978-1-4419-1280-0.
-
(2010)
Data Mining, Annals of Information Systems
, vol.8
, pp. 193-226
-
-
Weiss, G.M.1
-
35
-
-
84875404700
-
Feature selection for high-dimensional imbalanced data
-
[35] Yin, L., Ge, Y., Xiao, K., Wang, X., Quan, X., Feature selection for high-dimensional imbalanced data. Neurocomputing 105 (2013), 3–11, 10.1016/j.neucom.2012.04.039.
-
(2013)
Neurocomputing
, vol.105
, pp. 3-11
-
-
Yin, L.1
Ge, Y.2
Xiao, K.3
Wang, X.4
Quan, X.5
-
36
-
-
0035789316
-
Learning and making decisions when costs and probabilities are both unknown
-
[36] Zadrozny, B., Elkan, C., Learning and making decisions when costs and probabilities are both unknown. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '01, 2001, 204–213, 10.1145/502512.502540.
-
(2001)
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '01
, pp. 204-213
-
-
Zadrozny, B.1
Elkan, C.2
-
37
-
-
78650301771
-
Cluster-based majority under-sampling approaches for class imbalance learning
-
[37] Zhang, Y.-P., Zhang, L.-N., Wang, Y.-C., Cluster-based majority under-sampling approaches for class imbalance learning. 2010 2nd IEEE International Conference on Information and Financial Engineering, 2010, 400–404, 10.1109/ICIFE.2010.5609385.
-
(2010)
2010 2nd IEEE International Conference on Information and Financial Engineering
, pp. 400-404
-
-
Zhang, Y.-P.1
Zhang, L.-N.2
Wang, Y.-C.3
|