메뉴 건너뛰기




Volumn 408, Issue , 2017, Pages 146-161

Noise Reduction A Priori Synthetic Over-Sampling for class imbalanced data sets

Author keywords

Class imbalance; Classification; NRAS; OUPS; SMOTE

Indexed keywords

CLASSIFICATION (OF INFORMATION); VIRTUAL REALITY;

EID: 85018316823     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2017.04.046     Document Type: Article
Times cited : (85)

References (37)
  • 1
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: an overview
    • [1] Baldi, P., Brunak, S., Chauvin, Y., Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:5 (2000), 412–424.
    • (2000) Bioinformatics , vol.16 , Issue.5 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3
  • 2
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • [2] Batista, G.E., Prati, R.C., Monard, M.C., A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsl., 6(1), 2004, 20, 10.1145/1007730.1007735.
    • (2004) ACM SIGKDD Explorations Newsl. , vol.6 , Issue.1 , pp. 20
    • Batista, G.E.1    Prati, R.C.2    Monard, M.C.3
  • 5
    • 3543135271 scopus 로고    scopus 로고
    • Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • [5] D'Agostino, R.B., Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat. Med. 2281 (1998), 2265–2281.
    • (1998) Stat. Med. , vol.2281 , pp. 2265-2281
    • D'Agostino, R.B.1
  • 6
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • [6] Demšar, J., Demšar, J., Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006), 1–30, 10.1016/j.jecp.2010.03.005.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1    Demšar, J.2
  • 8
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • [8] Estabrooks, A., Jo, T., Japkowicz, N., A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20:1 (2004), 18–36, 10.1111/j.0824-7935.2004.t01-1-00228.x.
    • (2004) Comput. Intell. , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 9
    • 85037992344 scopus 로고    scopus 로고
    • Addressing the classification with imbalanced data: open problems and new challenges on class distribution
    • [9] Fernández, A., García, S., Herrera, F., Addressing the classification with imbalanced data: open problems and new challenges on class distribution. Hybrid Artif. Intell. Syst., 2011, 1–10.
    • (2011) Hybrid Artif. Intell. Syst. , pp. 1-10
    • Fernández, A.1    García, S.2    Herrera, F.3
  • 10
    • 84881548984 scopus 로고    scopus 로고
    • Certainty-based active learning for sampling imbalanced datasets
    • [10] Fu, J., Lee, S., Certainty-based active learning for sampling imbalanced datasets. Neurocomputing 119 (2013), 350–358, 10.1016/j.neucom.2013.03.023.
    • (2013) Neurocomputing , vol.119 , pp. 350-358
    • Fu, J.1    Lee, S.2
  • 11
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
    • [11] García, S., Fernández, A., Luengo, J., Herrera, F., Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180:10 (2010), 2044–2064, 10.1016/j.ins.2009.12.010.
    • (2010) Inf. Sci. , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 12
    • 80052394779 scopus 로고    scopus 로고
    • On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
    • [12] García, V., Sánchez, J., Mollineda, R.A., On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl. Based Syst. 25:1 (2012), 13–21, 10.1016/j.knosys.2011.06.013.
    • (2012) Knowl. Based Syst. , vol.25 , Issue.1 , pp. 13-21
    • García, V.1    Sánchez, J.2    Mollineda, R.A.3
  • 13
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach
    • [13] Guo, H., Viktor, H.L., Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. ACM SIGKDD Explorations Newsl. 6:1 (2004), 30–39.
    • (2004) ACM SIGKDD Explorations Newsl. , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 17
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • [17] He, H., Garcia, E.A., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21:9 (2009), 1263–1284, 10.1109/TKDE.2008.239.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 20
    • 84878098426 scopus 로고    scopus 로고
    • The influence of class imbalance on cost-sensitive learning: an empirical study
    • [20] Liu, X.-y., Zhou, Z.-h., The influence of class imbalance on cost-sensitive learning: an empirical study. Sixth International Conference on Data Mining (ICDM’06), 2006, 970–974, 10.1109/ICDM.2006.158.
    • (2006) Sixth International Conference on Data Mining (ICDM’06) , pp. 970-974
    • Liu, X.-Y.1    Zhou, Z.-H.2
  • 21
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics
    • [21] López, V., Fernández, A., García, S., Palade, V., Herrera, F., An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250 (2013), 113–141, 10.1016/j.ins.2013.07.007.
    • (2013) Inf. Sci. , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 22
    • 84888645340 scopus 로고    scopus 로고
    • On the importance of the validation technique for classification with imbalanced datasets: addressing covariate shift when data is skewed
    • [22] López, V., Fernández, A., Herrera, F., On the importance of the validation technique for classification with imbalanced datasets: addressing covariate shift when data is skewed. Inf. Sci. 257 (2014), 1–13, 10.1016/j.ins.2013.09.038.
    • (2014) Inf. Sci. , vol.257 , pp. 1-13
    • López, V.1    Fernández, A.2    Herrera, F.3
  • 26
    • 84938099722 scopus 로고    scopus 로고
    • Safe Level OUPS for improving target concept learning in imbalanced data sets
    • [26] Rivera, W.A., Asparouhov, O., Safe Level OUPS for improving target concept learning in imbalanced data sets. IEEE SoutheastCon 2015, 2015.
    • (2015) IEEE SoutheastCon 2015
    • Rivera, W.A.1    Asparouhov, O.2
  • 28
    • 84923328437 scopus 로고    scopus 로고
    • SMOTEIPF: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering
    • [28] Sáez, J.a., Luengo, J., Stefanowski, J., Herrera, F., SMOTEIPF: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf. Sci. 291 (2015), 184–203, 10.1016/j.ins.2014.08.051.
    • (2015) Inf. Sci. , vol.291 , pp. 184-203
    • Sáez, J.A.1    Luengo, J.2    Stefanowski, J.3    Herrera, F.4
  • 30
    • 84878457382 scopus 로고    scopus 로고
    • Handling imbalanced data sets with synthetic boundary data generation using bootstrap re-sampling and AdaBoost techniques
    • [30] Thanathamathee, P., Lursinsap, C., Handling imbalanced data sets with synthetic boundary data generation using bootstrap re-sampling and AdaBoost techniques. Pattern Recognit. Lett. 34:12 (2013), 1339–1347, 10.1016/j.patrec.2013.04.019.
    • (2013) Pattern Recognit. Lett. , vol.34 , Issue.12 , pp. 1339-1347
    • Thanathamathee, P.1    Lursinsap, C.2
  • 31
    • 79951771270 scopus 로고    scopus 로고
    • Imbalanced classification using support vector machine ensemble
    • [31] Tian, J., Gu, H., Liu, W., Imbalanced classification using support vector machine ensemble. Neural Comput. Appl. 20:2 (2010), 203–209, 10.1007/s00521-010-0349-9.
    • (2010) Neural Comput. Appl. , vol.20 , Issue.2 , pp. 203-209
    • Tian, J.1    Gu, H.2    Liu, W.3
  • 32
    • 84921279740 scopus 로고    scopus 로고
    • Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms
    • [32] Vorraboot, P., Rasmequan, S., Chinnasarn, K., Lursinsap, C., Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms. Neurocomputing 152 (2015), 429–443, 10.1016/j.neucom.2014.10.007.
    • (2015) Neurocomputing , vol.152 , pp. 429-443
    • Vorraboot, P.1    Rasmequan, S.2    Chinnasarn, K.3    Lursinsap, C.4
  • 33
    • 82555204641 scopus 로고    scopus 로고
    • Data mining and knowledge discovery handbook
    • [33] Weiss, G.M., Data mining and knowledge discovery handbook. Data Mining and Knowledge Discovery Handbook 1 (2010), 747–757, 10.1007/978-0-387-09823-4.
    • (2010) Data Mining and Knowledge Discovery Handbook , vol.1 , pp. 747-757
    • Weiss, G.M.1
  • 34
    • 77956198600 scopus 로고    scopus 로고
    • The impact of small disjuncts on classifier learning
    • R. Stahlbock S.F. Crone S. Lessmann Springer US Boston, MA
    • [34] Weiss, G.M., The impact of small disjuncts on classifier learning. Stahlbock, R., Crone, S.F., Lessmann, S., (eds.) Data Mining Annals of Information Systems, 8, 2010, Springer US, Boston, MA, 193–226, 10.1007/978-1-4419-1280-0.
    • (2010) Data Mining, Annals of Information Systems , vol.8 , pp. 193-226
    • Weiss, G.M.1
  • 35
    • 84875404700 scopus 로고    scopus 로고
    • Feature selection for high-dimensional imbalanced data
    • [35] Yin, L., Ge, Y., Xiao, K., Wang, X., Quan, X., Feature selection for high-dimensional imbalanced data. Neurocomputing 105 (2013), 3–11, 10.1016/j.neucom.2012.04.039.
    • (2013) Neurocomputing , vol.105 , pp. 3-11
    • Yin, L.1    Ge, Y.2    Xiao, K.3    Wang, X.4    Quan, X.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.