메뉴 건너뛰기




Volumn 1, Issue , 2017, Pages

Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85018266184     PISSN: None     EISSN: 23973358     Source Type: Journal    
DOI: 10.1038/s41570-016-0003     Document Type: Review
Times cited : (2715)

References (148)
  • 1
    • 81555207951 scopus 로고    scopus 로고
    • Electrical energy storage for the grid: A battery of choices
    • Dunn, B., Kamath, H., Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices. Science 334, 928-935 (2011).
    • (2011) Science , vol.334 , pp. 928-935
    • Dunn, B.1    Kamath, H.2    Tarascon, J.-M.3
  • 2
    • 33750458683 scopus 로고    scopus 로고
    • Powering the planet: Chemical challenges in solar energy utilization
    • Lewis, N. S., Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729-15735 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 15729-15735
    • Lewis, N.S.1    Nocera, D.G.2
  • 3
    • 79956054956 scopus 로고    scopus 로고
    • Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
    • Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805-809 (2011).
    • (2011) Science , vol.332 , pp. 805-809
    • Blankenship, R.E.1
  • 4
    • 84954363471 scopus 로고    scopus 로고
    • Solar electricity and solar fuels: Status and perspectives in the context of the energy transition
    • Armaroli, N., Balzani, V. Solar electricity and solar fuels: Status and perspectives in the context of the energy transition. Chem. Eur. J. 22, 32-57 (2016).
    • (2016) Chem. Eur. J. , vol.22 , pp. 32-57
    • Armaroli, N.1    Balzani, V.2
  • 5
    • 84857099596 scopus 로고    scopus 로고
    • Artificial photosynthesis for solar fuels
    • Styring, S. Artificial photosynthesis for solar fuels. Faraday Discuss. 155, 357-376 (2012).
    • (2012) Faraday Discuss. , vol.155 , pp. 357-376
    • Styring, S.1
  • 6
    • 84976547456 scopus 로고    scopus 로고
    • Challenges towards economic fuel generation from renewable electricity: The need for efficient electro-catalysis
    • Le Formal, F., Boureé, W. S., Prévot, M. S., Sivula, K. Challenges towards economic fuel generation from renewable electricity: The need for efficient electro-catalysis. Chimia 69, 789-798 (2015).
    • (2015) Chimia , vol.69 , pp. 789-798
    • Le Formal, F.1    Boureé, W.S.2    Prévot, M.S.3    Sivula, K.4
  • 7
    • 84884879248 scopus 로고    scopus 로고
    • Water-splitting catalysis and solar fuel devices: Artificial leaves on the move
    • Joya, K. S., Joya, Y. F., Ocakoglu, K., van de Krol, R. Water-splitting catalysis and solar fuel devices: Artificial leaves on the move. Angew. Chem. Int. Ed. 52, 10426-10437 (2013).
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 10426-10437
    • Joya, K.S.1    Joya, Y.F.2    Ocakoglu, K.3    Van De Krol, R.4
  • 8
    • 84864545310 scopus 로고    scopus 로고
    • Artificial photosynthesis for solar water-splitting
    • Tachibana, Y., Vayssieres, L., Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 6, 511-518 (2012).
    • (2012) Nat. Photonics , vol.6 , pp. 511-518
    • Tachibana, Y.1    Vayssieres, L.2    Durrant, J.R.3
  • 9
    • 84926444089 scopus 로고    scopus 로고
    • Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
    • McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347-4357 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 4347-4357
    • McCrory, C.C.L.1
  • 11
    • 84907983567 scopus 로고    scopus 로고
    • Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
    • Faber, M. S., Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519-3542 (2014).
    • (2014) Energy Environ. Sci. , vol.7 , pp. 3519-3542
    • Faber, M.S.1    Jin, S.2
  • 12
    • 84861174023 scopus 로고    scopus 로고
    • The artificial leaf
    • Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767-776 (2012).
    • (2012) Acc. Chem. Res. , vol.45 , pp. 767-776
    • Nocera, D.G.1
  • 13
    • 84934916291 scopus 로고    scopus 로고
    • Noble metal-free hydrogen evolution catalysts for water splitting
    • Zou, X., Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148-5180 (2015).
    • (2015) Chem. Soc. Rev. , vol.44 , pp. 5148-5180
    • Zou, X.1    Zhang, Y.2
  • 14
    • 84941779540 scopus 로고    scopus 로고
    • Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction
    • Zeng, M., Li, Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 14942-14962 (2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 14942-14962
    • Zeng, M.1    Li, Y.2
  • 15
    • 84949595667 scopus 로고    scopus 로고
    • Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting
    • Kang, D. et al. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 115, 12839-12887 (2015).
    • (2015) Chem. Rev. , vol.115 , pp. 12839-12887
    • Kang, D.1
  • 16
    • 84966728652 scopus 로고    scopus 로고
    • First row transition metal catalysts for solar-driven water oxidation produced by electrodeposition
    • Roger, I., Symes, M. D. First row transition metal catalysts for solar-driven water oxidation produced by electrodeposition. J. Mater. Chem. A 4, 6724-6741 (2016).
    • (2016) J. Mater. Chem. A , vol.4 , pp. 6724-6741
    • Roger, I.1    Symes, M.D.2
  • 17
    • 79960999630 scopus 로고    scopus 로고
    • Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts
    • Fukuzumi, S., Yamada, Y., Suenobu, T., Ohkubo, K., Kotani, H. Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts. Energy Environ. Sci. 4, 2754-2766 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 2754-2766
    • Fukuzumi, S.1    Yamada, Y.2    Suenobu, T.3    Ohkubo, K.4    Kotani, H.5
  • 18
    • 84901923735 scopus 로고    scopus 로고
    • Photochemical splitting of water for hydrogen production by photocatalysis: A review
    • Ismail, A. A., Bahnemann, D. W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. Sol. Energy Mater Sol. Cells 128, 85-101 (2014).
    • (2014) Sol. Energy Mater Sol. Cells , vol.128 , pp. 85-101
    • Ismail, A.A.1    Bahnemann, D.W.2
  • 19
    • 84906044069 scopus 로고    scopus 로고
    • Progress in base-metal water oxidation catalysis
    • Parent, A. R., Sakai, K. Progress in base-metal water oxidation catalysis. Chem Sus Chem 7, 2070-2080 (2014).
    • (2014) Chem Sus Chem , vol.7 , pp. 2070-2080
    • Parent, A.R.1    Sakai, K.2
  • 20
    • 0028374353 scopus 로고
    • Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis
    • Fan, C., Piron, D. L., Sleb, A., Paradis, P. Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis. J. Electrochem. Soc. 141, 382-387 (1994).
    • (1994) J. Electrochem. Soc. , vol.141 , pp. 382-387
    • Fan, C.1    Piron, D.L.2    Sleb, A.3    Paradis, P.4
  • 21
    • 0025243930 scopus 로고
    • Transition metal-based hydrogen electrodes in alkaline solution-electrocatalysis on nickel based binary alloy coatings
    • Arul Raj, I., Vasu, K. I. Transition metal-based hydrogen electrodes in alkaline solution-electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem. 20, 32-38 (1990).
    • (1990) J. Appl. Electrochem. , vol.20 , pp. 32-38
    • Arul Raj, I.1    Vasu, K.I.2
  • 22
    • 84873404226 scopus 로고    scopus 로고
    • Ni-Mo nanopowders for efficient electrochemical hydrogen evolution
    • McKone, J. R., Sadtler, B. F., Werlang, C. A., Lewis, N. S., Gray, H. B. Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3, 166-169 (2013).
    • (2013) ACS Catal. , vol.3 , pp. 166-169
    • McKone, J.R.1    Sadtler, B.F.2    Werlang, C.A.3    Lewis, N.S.4    Gray, H.B.5
  • 23
    • 84908235437 scopus 로고    scopus 로고
    • A 3D nanoporous Ni-Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution
    • Wang, Y. et al. A 3D nanoporous Ni-Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution. Chem Electro Chem. 1, 1138-1144 (2014).
    • (2014) Chem Electro Chem. , vol.1 , pp. 1138-1144
    • Wang, Y.1
  • 24
    • 33750804271 scopus 로고
    • Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions
    • Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39, 163-184 (1972).
    • (1972) J. Electroanal. Chem. , vol.39 , pp. 163-184
    • Trasatti, S.1
  • 25
    • 15744396507 scopus 로고    scopus 로고
    • Trends in the exchange current for hydrogen evolution
    • Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23-J26 (2005).
    • (2005) J. Electrochem. Soc. , vol.152 , pp. J23-J26
    • Nørskov, J.K.1
  • 26
    • 84878092949 scopus 로고    scopus 로고
    • Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces
    • Sheng, W., Myint, M., Chen, J. G., Yan, Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6, 1509-1512 (2013).
    • (2013) Energy Environ. Sci. , vol.6 , pp. 1509-1512
    • Sheng, W.1    Myint, M.2    Chen, J.G.3    Yan, Y.4
  • 27
    • 17644368513 scopus 로고    scopus 로고
    • Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution
    • Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308-5309 (2005).
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 5308-5309
    • Hinnemann, B.1
  • 28
    • 33845999467 scopus 로고
    • Interfacial properties of semiconducting transition metal chalcogenides
    • Jaegermann, W., Tributsch, H. Interfacial properties of semiconducting transition metal chalcogenides. Prog. Surf. Sci. 29, 1-167 (1988).
    • (1988) Prog. Surf. Sci. , vol.29 , pp. 1-167
    • Jaegermann, W.1    Tributsch, H.2
  • 29
    • 34447326950 scopus 로고    scopus 로고
    • Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts
    • Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100-102 (2007).
    • (2007) Science , vol.317 , pp. 100-102
    • Jaramillo, T.F.1
  • 30
    • 84867840741 scopus 로고    scopus 로고
    • Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
    • Kibsgaard, J., Chen, Z., Reinecke, B. N., Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963-969 (2012).
    • (2012) Nat. Mater. , vol.11 , pp. 963-969
    • Kibsgaard, J.1    Chen, Z.2    Reinecke, B.N.3    Jaramillo, T.F.4
  • 31
    • 79959454526 scopus 로고    scopus 로고
    • Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water
    • Merki, D., Fierro, S., Vrubel, H., Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262-1267 (2011).
    • (2011) Chem. Sci. , vol.2 , pp. 1262-1267
    • Merki, D.1    Fierro, S.2    Vrubel, H.3    Hu, X.4
  • 32
    • 79955891162 scopus 로고    scopus 로고
    • MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction
    • Li, Y. et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296-7299 (2011).
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 7296-7299
    • Li, Y.1
  • 33
    • 84949293665 scopus 로고    scopus 로고
    • Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies
    • Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48-53 (2016).
    • (2016) Nat. Mater. , vol.15 , pp. 48-53
    • Li, H.1
  • 34
    • 84904437446 scopus 로고    scopus 로고
    • High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures
    • Faber, M. S. et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures. J. Am. Chem. Soc. 136, 10053-10061 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 10053-10061
    • Faber, M.S.1
  • 35
    • 84889254454 scopus 로고    scopus 로고
    • Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water
    • Sun, Y. et al. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 135, 17699-17702 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 17699-17702
    • Sun, Y.1
  • 36
    • 84882626048 scopus 로고    scopus 로고
    • Novel cobalt/nickel-tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water
    • Tran, P. D. et al. Novel cobalt/nickel-tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ. Sci. 6, 2452-2459 (2013).
    • (2013) Energy Environ. Sci. , vol.6 , pp. 2452-2459
    • Tran, P.D.1
  • 37
    • 84883187888 scopus 로고    scopus 로고
    • Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution
    • Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850-855 (2013).
    • (2013) Nat. Mater. , vol.12 , pp. 850-855
    • Voiry, D.1
  • 38
    • 84882331328 scopus 로고    scopus 로고
    • Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen
    • Xu, Y.-F., Gao, M.-R., Zheng, Y.-R., Jiang, J., Yu, S.-H. Nickel/nickel(ii) oxide nanoparticles anchored onto cobalt(iv) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem. Int. Ed. 52, 8546-8550 (2013).
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 8546-8550
    • Xu, Y.-F.1    Gao, M.-R.2    Zheng, Y.-R.3    Jiang, J.4    Yu, S.-H.5
  • 39
    • 84907977557 scopus 로고    scopus 로고
    • Active guests in the MoS2/MoSe2 host lattice: Efficient hydrogen evolution using few-layer alloys of MoS2(1 x) Se2x
    • Kiran, V., Mukherjee, D., Jenjeti, R. N., Sampath, S. Active guests in the MoS2/MoSe2 host lattice: Efficient hydrogen evolution using few-layer alloys of MoS2(1 x) Se2x. Nanoscale 6, 12856-12863 (2014).
    • (2014) Nanoscale , vol.6 , pp. 12856-12863
    • Kiran, V.1    Mukherjee, D.2    Jenjeti, R.N.3    Sampath, S.4
  • 40
    • 84952901422 scopus 로고    scopus 로고
    • One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: An efficient 3D electrode for hydrogen evolution reaction
    • Zhou, H. et al. One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: An efficient 3D electrode for hydrogen evolution reaction. Nano Energy 20, 29-36 (2016).
    • (2016) Nano Energy , vol.20 , pp. 29-36
    • Zhou, H.1
  • 41
    • 84879511122 scopus 로고    scopus 로고
    • Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction
    • Popczun, E. J. et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267-9270 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 9267-9270
    • Popczun, E.J.1
  • 42
    • 84900868846 scopus 로고    scopus 로고
    • Highly Active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles
    • Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S., Schaak, R. E. Highly Active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53, 5427-5430 (2014).
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 5427-5430
    • Popczun, E.J.1    Read, C.G.2    Roske, C.W.3    Lewis, N.S.4    Schaak, R.E.5
  • 43
    • 84941073119 scopus 로고    scopus 로고
    • A cost-effective 3D hydrogen evolution cathode with high catalytic activity: Fep nanowire array as the active phase
    • Jiang, P. et al. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: Fep nanowire array as the active phase. Angew. Chem. Int. Ed. 53, 12855-12859 (2014).
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 12855-12859
    • Jiang, P.1
  • 44
    • 84919698565 scopus 로고    scopus 로고
    • Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction
    • Kibsgaard, J., Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53, 14433-14437 (2014).
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 14433-14437
    • Kibsgaard, J.1    Jaramillo, T.F.2
  • 45
    • 84938828781 scopus 로고    scopus 로고
    • Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution
    • Liang, H.-W. et al. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 6, 7992 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7992
    • Liang, H.-W.1
  • 46
    • 84862642120 scopus 로고    scopus 로고
    • Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets
    • Chen, W.-F. et al. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131-6135 (2012).
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 6131-6135
    • Chen, W.-F.1
  • 47
    • 84891288161 scopus 로고    scopus 로고
    • Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction
    • Cao, B., Veith, G. M., Neuefeind, J. C., Adzic, R. R., Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 19186-19192 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 19186-19192
    • Cao, B.1    Veith, G.M.2    Neuefeind, J.C.3    Adzic, R.R.4    Khalifah, P.G.5
  • 48
    • 84870987808 scopus 로고    scopus 로고
    • Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions
    • Vrubel, H., Hu, X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Int. Ed. 51, 12703-12706 (2012).
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 12703-12706
    • Vrubel, H.1    Hu, X.2
  • 49
    • 84890489994 scopus 로고    scopus 로고
    • A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction
    • Liao, L. et al. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7, 387-392 (2014).
    • (2014) Energy Environ. Sci. , vol.7 , pp. 387-392
    • Liao, L.1
  • 50
    • 84967153330 scopus 로고    scopus 로고
    • Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: An efficient electrocatalyst for the hydrogen evolution reaction
    • Shi, Z. et al. Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: An efficient electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 4, 6006-6013 (2016).
    • (2016) J. Mater. Chem. A , vol.4 , pp. 6006-6013
    • Shi, Z.1
  • 51
    • 84958064369 scopus 로고    scopus 로고
    • Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis
    • Fan, L. et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 10667 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 10667
    • Fan, L.1
  • 52
    • 84928798815 scopus 로고    scopus 로고
    • Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution
    • Lu, Q. et al. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat. Commun. 6, 6567 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 6567
    • Lu, Q.1
  • 53
    • 42449114117 scopus 로고    scopus 로고
    • Metal oxide catalysts for the evolution of O2 from H2O
    • Merrill, M. D., Dougherty, R. C. Metal Oxide Catalysts for the Evolution of O2 from H2O. J. Phys. Chem. C 112, 3655-3666 (2008).
    • (2008) J. Phys. Chem. C , vol.112 , pp. 3655-3666
    • Merrill, M.D.1    Dougherty, R.C.2
  • 54
    • 84925002937 scopus 로고    scopus 로고
    • Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities
    • Lu, X., Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 6616
    • Lu, X.1    Zhao, C.2
  • 55
    • 84878901341 scopus 로고    scopus 로고
    • An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation
    • Gong, M. et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452-8455 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 8452-8455
    • Gong, M.1
  • 56
    • 78650500203 scopus 로고    scopus 로고
    • Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers
    • Li, X., Walsh, F. C., Pletcher, D. Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Phys. Chem. Chem. Phys. 13, 1162-1167 (2011).
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 1162-1167
    • Li, X.1    Walsh, F.C.2    Pletcher, D.3
  • 57
    • 0023293708 scopus 로고
    • The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes
    • Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377-384 (1987).
    • (1987) J. Electrochem. Soc. , vol.134 , pp. 377-384
    • Corrigan, D.A.1
  • 58
    • 84883088089 scopus 로고    scopus 로고
    • An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen
    • Louie, M. W., Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329-12337 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 12329-12337
    • Louie, M.W.1    Bell, A.T.2
  • 59
    • 84921927359 scopus 로고    scopus 로고
    • Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting
    • Friebel, D. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305-1313 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 1305-1313
    • Friebel, D.1
  • 60
    • 84930202429 scopus 로고    scopus 로고
    • Electrodeposited NixCo3 xO4 nanostructured films as bifunctional oxygen electrocatalysts
    • Lambert, T. N. et al. Electrodeposited NixCo3 xO4 nanostructured films as bifunctional oxygen electrocatalysts. Chem. Commun. 51, 9511-9514 (2015).
    • (2015) Chem. Commun. , vol.51 , pp. 9511-9514
    • Lambert, T.N.1
  • 61
    • 84943261687 scopus 로고    scopus 로고
    • Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting
    • Tian, J. et al. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting. J. Mater. Chem. A 3, 20056-20059 (2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 20056-20059
    • Tian, J.1
  • 62
    • 84900346581 scopus 로고    scopus 로고
    • Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation
    • Trotochaud, L., Young, S. L., Ranney, J. K., Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744-6753 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 6744-6753
    • Trotochaud, L.1    Young, S.L.2    Ranney, J.K.3    Boettcher, S.W.4
  • 63
    • 84925114651 scopus 로고    scopus 로고
    • Contributions to activity enhancement via Fe incorporation in Ni-(oxy) hydroxide/borate catalysts for near-neutral pH oxygen evolution
    • Smith, A. M., Trotochaud, L., Burke, M. S., Boettcher, S. W. Contributions to activity enhancement via Fe incorporation in Ni-(oxy) hydroxide/borate catalysts for near-neutral pH oxygen evolution. Chem. Commun. 51, 5261-5263 (2015).
    • (2015) Chem. Commun. , vol.51 , pp. 5261-5263
    • Smith, A.M.1    Trotochaud, L.2    Burke, M.S.3    Boettcher, S.W.4
  • 64
    • 84982147963 scopus 로고    scopus 로고
    • Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism
    • Burke, M. S., Kast, M. G., Trotochaud, L., Smith, A. M., Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638-3648 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 3638-3648
    • Burke, M.S.1    Kast, M.G.2    Trotochaud, L.3    Smith, A.M.4    Boettcher, S.W.5
  • 65
    • 84953450001 scopus 로고    scopus 로고
    • Efficient electrocatalytic water oxidation at neutral and high pH by adventitious nickel at nanomolar concentrations
    • Roger, I., Symes, M. D. Efficient electrocatalytic water oxidation at neutral and high pH by adventitious nickel at nanomolar concentrations. J. Am. Chem. Soc. 137, 13980-13988 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 13980-13988
    • Roger, I.1    Symes, M.D.2
  • 66
    • 84961619661 scopus 로고    scopus 로고
    • Homogeneously dispersed multimetal oxygen-evolving catalysts
    • Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333-337 (2016).
    • (2016) Science , vol.352 , pp. 333-337
    • Zhang, B.1
  • 67
    • 83255187152 scopus 로고    scopus 로고
    • Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
    • Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B., Shao-Horn, Y. A. Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383-1385 (2011).
    • (2011) Science , vol.334 , pp. 1383-1385
    • Suntivich, J.1    May, K.J.2    Gasteiger, H.A.3    Goodenough, J.B.4    Shao-Horn, Y.A.5
  • 68
    • 84893119144 scopus 로고    scopus 로고
    • Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis
    • Haber, J. A. et al. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy Environ. Sci. 7, 682-688 (2014).
    • (2014) Energy Environ. Sci. , vol.7 , pp. 682-688
    • Haber, J.A.1
  • 69
    • 84876681651 scopus 로고    scopus 로고
    • Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis
    • Smith, R. D. L. et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60-63 (2013).
    • (2013) Science , vol.340 , pp. 60-63
    • Smith, R.D.L.1
  • 70
    • 50149121231 scopus 로고    scopus 로고
    • In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+
    • Kanan, M. W., Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072-1075 (2008).
    • (2008) Science , vol.321 , pp. 1072-1075
    • Kanan, M.W.1    Nocera, D.G.2
  • 72
    • 67749084441 scopus 로고    scopus 로고
    • Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts
    • Surendranath, Y., Dinca, M., Nocera, D. G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 131, 2615-2620 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 2615-2620
    • Surendranath, Y.1    Dinca, M.2    Nocera, D.G.3
  • 73
    • 70349108431 scopus 로고    scopus 로고
    • Cobalt-oxo core of a water-oxidizing catalyst film
    • Risch, M. et al. Cobalt-oxo core of a water-oxidizing catalyst film. J. Am. Chem. Soc. 131, 6936-6937 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 6936-6937
    • Risch, M.1
  • 74
    • 77957302625 scopus 로고    scopus 로고
    • Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy
    • Kanan, M. W. et al. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692-13701 (2010).
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 13692-13701
    • Kanan, M.W.1
  • 75
    • 77952555893 scopus 로고    scopus 로고
    • EPR evidence for Co(IV) species produced during water oxidation at neutral pH
    • McAlpin, J. G. et al. EPR evidence for Co(iv) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 132, 6882-6883 (2010).
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 6882-6883
    • McAlpin, J.G.1
  • 76
    • 78649957247 scopus 로고    scopus 로고
    • Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH
    • Surendranath, Y., Kanan, M. W., Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501-16509 (2010).
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 16501-16509
    • Surendranath, Y.1    Kanan, M.W.2    Nocera, D.G.3
  • 77
    • 79851470281 scopus 로고    scopus 로고
    • Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters
    • Esswein, A. J., Surendranath, Y., Reece, S. Y., Nocera, D. G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ. Sci. 4, 499-504 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 499-504
    • Esswein, A.J.1    Surendranath, Y.2    Reece, S.Y.3    Nocera, D.G.4
  • 78
    • 84866691612 scopus 로고    scopus 로고
    • Electrodeposition of crystalline Co3O4-A catalyst for the oxygen evolution reaction
    • Koza, J. A., He, Z., Miller, A. S., Switzer, J. A. Electrodeposition of crystalline Co3O4-A catalyst for the oxygen evolution reaction. Chem. Mater. 24, 3567-3573 (2012).
    • (2012) Chem. Mater. , vol.24 , pp. 3567-3573
    • Koza, J.A.1    He, Z.2    Miller, A.S.3    Switzer, J.A.4
  • 79
    • 77958575074 scopus 로고    scopus 로고
    • Fluoride-modulated cobalt catalysts for electrochemical oxidation of water under non-alkaline conditions
    • Gerken, J. B., Landis, E. C., Hamers, R. J., Stahl, S. S. Fluoride-modulated cobalt catalysts for electrochemical oxidation of water under non-alkaline conditions. Chem Sus Chem 3, 1176-1179 (2010).
    • (2010) Chem Sus Chem , vol.3 , pp. 1176-1179
    • Gerken, J.B.1    Landis, E.C.2    Hamers, R.J.3    Stahl, S.S.4
  • 80
    • 80052601571 scopus 로고    scopus 로고
    • Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: The thermodynamic basis for catalyst structure, stability, and activity
    • Gerken, J. B. et al. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: The thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133, 14431-14442 (2011).
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 14431-14442
    • Gerken, J.B.1
  • 81
    • 84896804157 scopus 로고    scopus 로고
    • Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ
    • Bloor, L. G., Molina, P. I., Symes, M. D., Cronin, L. Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. J. Am. Chem. Soc. 136, 3304-3311 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 3304-3311
    • Bloor, L.G.1    Molina, P.I.2    Symes, M.D.3    Cronin, L.4
  • 82
    • 85027936709 scopus 로고    scopus 로고
    • Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting
    • Jiang, N., You, B., Sheng, M., Sun, Y. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. Int. Ed. 54, 6251-6254 (2015).
    • (2015) Angew. Chem. Int. Ed. , vol.54 , pp. 6251-6254
    • Jiang, N.1    You, B.2    Sheng, M.3    Sun, Y.4
  • 83
    • 84963945122 scopus 로고    scopus 로고
    • Efficient water oxidation using CoMnP nanoparticles
    • Li, D., Baydoun, H., Verani, C. N., Brock, S. L. Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138, 4006-4009 (2016).
    • (2016) J. Am. Chem. Soc. , vol.138 , pp. 4006-4009
    • Li, D.1    Baydoun, H.2    Verani, C.N.3    Brock, S.L.4
  • 84
    • 77953751030 scopus 로고    scopus 로고
    • Nickel-borate oxygen-evolving catalyst that functions under benign conditions
    • Dinca, M., Surendranath, Y., Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl Acad. Sci. USA 107, 10337-10341 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 10337-10341
    • Dinca, M.1    Surendranath, Y.2    Nocera, D.G.3
  • 85
    • 84874927065 scopus 로고    scopus 로고
    • Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst
    • Bediako, D. K., Surendranath, Y., Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 135, 3662-3674 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 3662-3674
    • Bediako, D.K.1    Surendranath, Y.2    Nocera, D.G.3
  • 86
    • 84859990754 scopus 로고    scopus 로고
    • Structure-activity correlations in a nickel-borate oxygen evolution catalyst
    • Bediako, D. K. et al. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 134, 6801-6809 (2012).
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 6801-6809
    • Bediako, D.K.1
  • 87
    • 84885136415 scopus 로고    scopus 로고
    • A silica co-electrodeposition route to highly active Ni-based film electrodes
    • Wu, L.-K. Hu, J.-M. Zhang, J.-Q., Cao, C.-N. A silica co-electrodeposition route to highly active Ni-based film electrodes. J. Mater. Chem. A 1, 12885-12892 (2013).
    • (2013) J. Mater. Chem. A , vol.1 , pp. 12885-12892
    • Wu, L.-K.1    Hu, J.-M.2    Zhang, J.-Q.3    Cao, C.-N.4
  • 88
    • 84971372051 scopus 로고    scopus 로고
    • Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst
    • Zhao, Y. et al. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 138, 6517-6524 (2016).
    • (2016) J. Am. Chem. Soc. , vol.138 , pp. 6517-6524
    • Zhao, Y.1
  • 89
    • 42149109765 scopus 로고    scopus 로고
    • Crystal structure of the oxygen-evolving complex of photosystem II
    • Barber, J. Crystal structure of the oxygen-evolving complex of photosystem ii. Inorg. Chem. 47, 1700-1710 (2008).
    • (2008) Inorg. Chem. , vol.47 , pp. 1700-1710
    • Barber, J.1
  • 90
    • 77957301555 scopus 로고    scopus 로고
    • Bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation
    • Gorlin, Y., Jaramillo, T. F. A. Bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612-13614 (2010).
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 13612-13614
    • Gorlin, Y.1    Jaramillo, T.F.A.2
  • 91
    • 84903785368 scopus 로고    scopus 로고
    • Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water
    • Ramírez, A. et al. Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J. Phys. Chem. C 118, 14073-14081 (2014).
    • (2014) J. Phys. Chem. C , vol.118 , pp. 14073-14081
    • Ramírez, A.1
  • 92
    • 84876907812 scopus 로고    scopus 로고
    • Improvement of catalytic water oxidation on MnOx films by heat treatment
    • Zhou, F. et al. Improvement of catalytic water oxidation on MnOx films by heat treatment. Chem Sus Chem 6, 643-651 (2013).
    • (2013) Chem Sus Chem , vol.6 , pp. 643-651
    • Zhou, F.1
  • 93
    • 84860381242 scopus 로고    scopus 로고
    • Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide
    • Zaharieva, I. et al. Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ. Sci. 5, 7081-7089 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 7081-7089
    • Zaharieva, I.1
  • 94
    • 84939864155 scopus 로고    scopus 로고
    • Atomistic texture of amorphous manganese oxides for electrochemical water splitting revealed by ab initio calculations combined with X-ray spectroscopy
    • Mattioli, G., Zaharieva, I., Dau, H., Guidoni, L. Atomistic texture of amorphous manganese oxides for electrochemical water splitting revealed by ab initio calculations combined with X-ray spectroscopy. J. Am. Chem. Soc. 137, 10254-10267 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 10254-10267
    • Mattioli, G.1    Zaharieva, I.2    Dau, H.3    Guidoni, L.4
  • 95
    • 84878911218 scopus 로고    scopus 로고
    • In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction
    • Gorlin, Y. et al. In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J. Am. Chem. Soc. 135, 8525-8534 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 8525-8534
    • Gorlin, Y.1
  • 96
    • 84867308213 scopus 로고    scopus 로고
    • Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidation
    • Zhou, F. et al. Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidation. Adv. Energy Mater. 2, 1013-1021 (2012).
    • (2012) Adv. Energy Mater. , vol.2 , pp. 1013-1021
    • Zhou, F.1
  • 97
    • 84856269245 scopus 로고    scopus 로고
    • Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts
    • Takashima, T., Hashimoto, K., Nakamura, R. Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J. Am. Chem. Soc. 134, 1519-1527 (2012).
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 1519-1527
    • Takashima, T.1    Hashimoto, K.2    Nakamura, R.3
  • 98
    • 84868586222 scopus 로고    scopus 로고
    • Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions
    • Takashima, T., Hashimoto, K., Nakamura, R. Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J. Am. Chem. Soc. 134, 18153-18156 (2012).
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 18153-18156
    • Takashima, T.1    Hashimoto, K.2    Nakamura, R.3
  • 99
    • 84899567757 scopus 로고    scopus 로고
    • Nucleation and growth mechanisms of an electrodeposited manganese oxide oxygen evolution catalyst
    • Huynh, M., Bediako, D. K., Liu, Y., Nocera, D. G. Nucleation and growth mechanisms of an electrodeposited manganese oxide oxygen evolution catalyst. J. Phys. Chem. C 118, 17142-17152 (2014).
    • (2014) J. Phys. Chem. C , vol.118 , pp. 17142-17152
    • Huynh, M.1    Bediako, D.K.2    Liu, Y.3    Nocera, D.G.4
  • 100
    • 84899562496 scopus 로고    scopus 로고
    • Functionally stable manganese oxide oxygen evolution catalyst in acid
    • Huynh, M., Bediako, D. K., Nocera, D. G. A. Functionally stable manganese oxide oxygen evolution catalyst in acid. J. Am. Chem. Soc. 136, 6002-6010 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 6002-6010
    • Huynh, M.1    Bediako, D.K.2    Nocera, D.G.A.3
  • 101
    • 78449289476 scopus 로고    scopus 로고
    • Solar water splitting cells
    • Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446-6473 (2010).
    • (2010) Chem. Rev. , vol.110 , pp. 6446-6473
    • Walter, M.G.1
  • 102
    • 79957528668 scopus 로고    scopus 로고
    • Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution
    • Hou, Y. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434-438 (2011).
    • (2011) Nat. Mater. , vol.10 , pp. 434-438
    • Hou, Y.1
  • 103
    • 84893498407 scopus 로고    scopus 로고
    • P-Si/W2C and p-Si/W2C/Pt photocathodes for the hydrogen evolution reaction
    • Berglund, S. P. et al. p-Si/W2C and p-Si/W2C/Pt photocathodes for the hydrogen evolution reaction. J. Am. Chem. Soc. 136, 1535-1544 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 1535-1544
    • Berglund, S.P.1
  • 104
    • 84902687618 scopus 로고    scopus 로고
    • Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2
    • Ding, Q. et al. Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. J. Am. Chem. Soc. 136, 8504-8507 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 8504-8507
    • Ding, Q.1
  • 105
    • 84947870907 scopus 로고    scopus 로고
    • Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide
    • Cabán-Acevedo, M. et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14, 1245-1251 (2015).
    • (2015) Nat. Mater. , vol.14 , pp. 1245-1251
    • Cabán-Acevedo, M.1
  • 106
    • 84953449999 scopus 로고    scopus 로고
    • Efficient electrochemical and photoelectrochemical H2 production from water by a cobalt dithiolene one-dimensional metal-organic surface
    • Downes, C. A., Marinescu, S. C. Efficient electrochemical and photoelectrochemical H2 production from water by a cobalt dithiolene one-dimensional metal-organic surface. J. Am. Chem. Soc. 137, 13740-13743 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 13740-13743
    • Downes, C.A.1    Marinescu, S.C.2
  • 107
    • 80052203149 scopus 로고    scopus 로고
    • Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes
    • McKone, J. R. et al. Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4, 3573-3583 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 3573-3583
    • McKone, J.R.1
  • 108
    • 84935907261 scopus 로고    scopus 로고
    • Solar hydrogen production by amorphous silicon photocathodes coated with a magnetron sputter deposited Mo2C catalyst
    • Morales-Guio, C. G. et al. Solar hydrogen production by amorphous silicon photocathodes coated with a magnetron sputter deposited Mo2C catalyst. J. Am. Chem. Soc. 137, 7035-7038 (2015).
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 7035-7038
    • Morales-Guio, C.G.1
  • 109
    • 84981295035 scopus 로고    scopus 로고
    • Enhancement of photocatalytic H2 production activity of CdS nanorods by cobalt-based cocatalyst modification
    • Lang, D., Cheng, F., Xiang, Q. Enhancement of photocatalytic H2 production activity of CdS nanorods by cobalt-based cocatalyst modification. Catal. Sci. Technol. 6, 6207-6216 (2016).
    • (2016) Catal. Sci. Technol. , vol.6 , pp. 6207-6216
    • Lang, D.1    Cheng, F.2    Xiang, Q.3
  • 110
    • 84941627483 scopus 로고    scopus 로고
    • CdSe quantum dots/molecular cobalt catalyst co-grafted open porous NiO film as a photocathode for visible light driven H2 evolution from neutral water
    • Meng, P., Wang, M., Yang, Y., Zhang, S., Sun, L. CdSe quantum dots/molecular cobalt catalyst co-grafted open porous NiO film as a photocathode for visible light driven H2 evolution from neutral water. J. Mater. Chem. A 3, 18852-18859 (2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 18852-18859
    • Meng, P.1    Wang, M.2    Yang, Y.3    Zhang, S.4    Sun, L.5
  • 111
    • 84868116582 scopus 로고    scopus 로고
    • Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting
    • Lin, C.-Y., Lai, Y.-H., Mersch, D., Reisner, E. Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem. Sci. 3, 3482-3487 (2012).
    • (2012) Chem. Sci. , vol.3 , pp. 3482-3487
    • Lin, C.-Y.1    Lai, Y.-H.2    Mersch, D.3    Reisner, E.4
  • 112
    • 84901753615 scopus 로고    scopus 로고
    • Engineering a Cu2O/NiO/Cu2MoS4 hybrid photocathode for H2 generation in water
    • Yang, C. et al. Engineering a Cu2O/NiO/Cu2MoS4 hybrid photocathode for H2 generation in water. Nanoscale 6, 6506-6510 (2014).
    • (2014) Nanoscale , vol.6 , pp. 6506-6510
    • Yang, C.1
  • 113
    • 84930966095 scopus 로고    scopus 로고
    • Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction
    • Dubale, A. A. et al. Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. J. Mater. Chem. A 3, 12482-12499 (2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 12482-12499
    • Dubale, A.A.1
  • 114
    • 84906568523 scopus 로고    scopus 로고
    • Hydrogen evolution from a copper(i) oxide photocathode coated with an amorphous molybdenum sulphide catalyst
    • Morales-Guio, C. G., Tilley, S. D., Vrubel, H., Grätzel, M., Hu, X. Hydrogen evolution from a copper(i) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 5, 3059 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 3059
    • Morales-Guio, C.G.1    Tilley, S.D.2    Vrubel, H.3    Grätzel, M.4    Hu, X.5
  • 115
    • 79957496297 scopus 로고    scopus 로고
    • Highly active oxide photocathode for photoelectrochemical water reduction
    • Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456-461 (2011).
    • (2011) Nat. Mater. , vol.10 , pp. 456-461
    • Paracchino, A.1    Laporte, V.2    Sivula, K.3    Grätzel, M.4    Thimsen, E.5
  • 116
    • 35348875044 scopus 로고
    • Electrochemical photolysis of water at a semiconductor electrode
    • Fujishima, A., Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38 (1972).
    • (1972) Nature , vol.238 , pp. 37-38
    • Fujishima, A.1    Honda, K.2
  • 117
    • 0000809541 scopus 로고
    • Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC)
    • Hodes, G., Cahen, D., Manassen, J. Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC). Nature 260, 312-313 (1976).
    • (1976) Nature , vol.260 , pp. 312-313
    • Hodes, G.1    Cahen, D.2    Manassen, J.3
  • 118
    • 0016974653 scopus 로고
    • Semiconductor electrodes: V. The application of chemically vapor deposited iron oxide films photosensitized electrolysis
    • Hardee, K. L., Bard, A. J. Semiconductor electrodes: V. The application of chemically vapor deposited iron oxide films photosensitized electrolysis. J. Electrochem. Soc. 123, 1024-1026 (1976).
    • (1976) J. Electrochem. Soc. , vol.123 , pp. 1024-1026
    • Hardee, K.L.1    Bard, A.J.2
  • 119
    • 70149105034 scopus 로고    scopus 로고
    • Solar water oxidation by composite catalyst/-Fe2O3 photoanodes
    • Zhong, D. K., Sun, J., Inumaru, H., Gamelin, D. R. Solar water oxidation by composite catalyst/-Fe2O3 photoanodes. J. Am. Chem. Soc. 131, 6086-6087 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 6086-6087
    • Zhong, D.K.1    Sun, J.2    Inumaru, H.3    Gamelin, D.R.4
  • 120
    • 77950271962 scopus 로고    scopus 로고
    • Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/-Fe2O3 Composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck
    • Zhong, D. K., Gamelin, D. R. Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/-Fe2O3 Composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 132, 4202-4207 (2010).
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 4202-4207
    • Zhong, D.K.1    Gamelin, D.R.2
  • 121
    • 79955704215 scopus 로고    scopus 로고
    • Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation
    • Zhong, D. K., Cornuz, M., Sivula, K., Grätzel, M., Gamelin, D. R. Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4, 1759-1764 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 1759-1764
    • Zhong, D.K.1    Cornuz, M.2    Sivula, K.3    Grätzel, M.4    Gamelin, D.R.5
  • 122
    • 79952121973 scopus 로고    scopus 로고
    • Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode
    • Seabold, J. A., Choi, K.-S. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 23, 1105-1112 (2011).
    • (2011) Chem. Mater. , vol.23 , pp. 1105-1112
    • Seabold, J.A.1    Choi, K.-S.2
  • 123
    • 79959926122 scopus 로고    scopus 로고
    • Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst
    • Pijpers, J. J. H., Winkler, M. T., Surendranath, Y., Buonassisi, T., Nocera, D. G. Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst. Proc. Natl Acad. Sci. USA 108, 10056-10061 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 10056-10061
    • Pijpers, J.J.H.1    Winkler, M.T.2    Surendranath, Y.3    Buonassisi, T.4    Nocera, D.G.5
  • 124
    • 84860523548 scopus 로고    scopus 로고
    • Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes
    • Abdi, F. F., van de Krol, R. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J. Phys. Chem. C 116, 9398-9404 (2012).
    • (2012) J. Phys. Chem. C , vol.116 , pp. 9398-9404
    • Abdi, F.F.1    Van De Krol, R.2
  • 125
    • 84873146782 scopus 로고    scopus 로고
    • Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping
    • Abdi, F. F., Firet, N., van de Krol, R. Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. Chem Cat Chem 5, 490-496 (2013).
    • (2013) Chem Cat Chem , vol.5 , pp. 490-496
    • Abdi, F.F.1    Firet, N.2    Van De Krol, R.3
  • 126
    • 84860363292 scopus 로고    scopus 로고
    • Light induced water oxidation on cobalt-phosphate (Co-Pi) catalyst modified semi-transparent, porous SiO2-BiVO4 electrodes
    • Pilli, S. K. et al. Light induced water oxidation on cobalt-phosphate (Co-Pi) catalyst modified semi-transparent, porous SiO2-BiVO4 electrodes. Phys. Chem. Chem. Phys. 14, 7032-7039 (2012).
    • (2012) Phys. Chem. Chem. Phys. , vol.14 , pp. 7032-7039
    • Pilli, S.K.1
  • 127
    • 84868527592 scopus 로고    scopus 로고
    • Structure and activity of photochemically deposited CoPi" oxygen evolving catalyst on titania
    • Khnayzer, R. S. et al. Structure and activity of photochemically deposited "CoPi" oxygen evolving catalyst on titania. ACS Catal. 2, 2150-2160 (2012).
    • (2012) ACS Catal. , vol.2 , pp. 2150-2160
    • Khnayzer, R.S.1
  • 128
    • 84940876085 scopus 로고    scopus 로고
    • Efficient and stable photoelectrochemical seawater splitting with TiO2@g-C3N4 nanorod arrays decorated by Co-Pi
    • Li, Y. et al. Efficient and stable photoelectrochemical seawater splitting with TiO2@g-C3N4 nanorod arrays decorated by Co-Pi. J. Phys. Chem. C 119, 20283-20292 (2015).
    • (2015) J. Phys. Chem. C , vol.119 , pp. 20283-20292
    • Li, Y.1
  • 129
    • 84952362034 scopus 로고    scopus 로고
    • Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in tandem: A dual absorber artificial leaf
    • Kim, J. H. et al. Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in tandem: A dual absorber artificial leaf. ACS Nano 9, 11820-11829 (2015).
    • (2015) ACS Nano , vol.9 , pp. 11820-11829
    • Kim, J.H.1
  • 130
    • 84875839897 scopus 로고    scopus 로고
    • Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes
    • Choi, S. K., Choi, W., Park, H. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys. Chem. Chem. Phys. 15, 6499-6507 (2013).
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , pp. 6499-6507
    • Choi, S.K.1    Choi, W.2    Park, H.3
  • 131
    • 84930959011 scopus 로고    scopus 로고
    • Ni-Ci oxygen evolution catalyst integrated BiVO4 photoanodes for solar induced water oxidation
    • Pilli, S. K., Summers, K., Chidambaram, D. Ni-Ci oxygen evolution catalyst integrated BiVO4 photoanodes for solar induced water oxidation. RSC Adv. 5, 47080-47089 (2015).
    • (2015) RSC Adv. , vol.5 , pp. 47080-47089
    • Pilli, S.K.1    Summers, K.2    Chidambaram, D.3
  • 132
    • 84887059939 scopus 로고    scopus 로고
    • High-aspect-ratio WO3 nanoneedles modified with nickel-borate for efficient photoelectrochemical water oxidation
    • Jin, T., Diao, P., Xu, D., Wu, Q. High-aspect-ratio WO3 nanoneedles modified with nickel-borate for efficient photoelectrochemical water oxidation. Electrochim. Acta 114, 271-277 (2013).
    • (2013) Electrochim. Acta , vol.114 , pp. 271-277
    • Jin, T.1    Diao, P.2    Xu, D.3    Wu, Q.4
  • 133
    • 67349286420 scopus 로고    scopus 로고
    • NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes
    • Kleiman-Shwarsctein, A., Hu, Y.-S., Stucky, G. D., McFarland, E. W. NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes. Electrochem. Commun. 11, 1150-1153 (2009).
    • (2009) Electrochem. Commun. , vol.11 , pp. 1150-1153
    • Kleiman-Shwarsctein, A.1    Hu, Y.-S.2    Stucky, G.D.3    McFarland, E.W.4
  • 134
    • 84922876616 scopus 로고    scopus 로고
    • A novel in situ preparation method for nanostructured-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants
    • Zeng, Q. et al. A novel in situ preparation method for nanostructured-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. J. Mater. Chem. A 3, 4345-4353 (2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 4345-4353
    • Zeng, Q.1
  • 135
    • 77956018755 scopus 로고    scopus 로고
    • Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis
    • Tilley, S. D., Cornuz, M., Sivula, K., Grätzel, M. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405-6408 (2010).
    • (2010) Angew. Chem. Int. Ed. , vol.49 , pp. 6405-6408
    • Tilley, S.D.1    Cornuz, M.2    Sivula, K.3    Grätzel, M.4
  • 136
    • 84887776735 scopus 로고    scopus 로고
    • High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation
    • Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836-840 (2013).
    • (2013) Science , vol.342 , pp. 836-840
    • Kenney, M.J.1
  • 137
    • 84896735953 scopus 로고    scopus 로고
    • Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting
    • Kim, T. W., Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990-994 (2014).
    • (2014) Science , vol.343 , pp. 990-994
    • Kim, T.W.1    Choi, K.-S.2
  • 138
    • 0001877830 scopus 로고    scopus 로고
    • High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes
    • Rocheleau, R. E., Miller, E. L., Misra, A. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12, 3-10 (1998).
    • (1998) Energy Fuels , vol.12 , pp. 3-10
    • Rocheleau, R.E.1    Miller, E.L.2    Misra, A.3
  • 139
    • 84946137738 scopus 로고    scopus 로고
    • A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III-v light absorbers protected by amorphous TiO2 films
    • Verlage, E. et al. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem iii-v light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166-3172 (2015).
    • (2015) Energy Environ. Sci. , vol.8 , pp. 3166-3172
    • Verlage, E.1
  • 140
    • 80555150640 scopus 로고    scopus 로고
    • Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
    • Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645-648 (2011).
    • (2011) Science , vol.334 , pp. 645-648
    • Reece, S.Y.1
  • 141
    • 84948138346 scopus 로고    scopus 로고
    • Photoelectrochemical water splitting in an organic artificial leaf
    • Esiner, S. et al. Photoelectrochemical water splitting in an organic artificial leaf. J. Mater. Chem. A 3, 23936-23945 (2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 23936-23945
    • Esiner, S.1
  • 142
    • 84908004617 scopus 로고    scopus 로고
    • Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting
    • Sathre, R. et al. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci. 7, 3264-3278 (2014).
    • (2014) Energy Environ. Sci. , vol.7 , pp. 3264-3278
    • Sathre, R.1
  • 143
    • 17044403421 scopus 로고    scopus 로고
    • PEM electrolysis for production of hydrogen from renewable energy sources
    • Barbir, F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol. Energy 78, 661-669 (2005).
    • (2005) Sol. Energy , vol.78 , pp. 661-669
    • Barbir, F.1
  • 144
    • 84896962167 scopus 로고    scopus 로고
    • Material requirements for membrane separators in a water-splitting photoelectrochemical cell
    • Berger, A., Segalman, R. A., Newman, J. Material requirements for membrane separators in a water-splitting photoelectrochemical cell. Energy Environ. Sci. 7, 1468-1476 (2014).
    • (2014) Energy Environ. Sci. , vol.7 , pp. 1468-1476
    • Berger, A.1    Segalman, R.A.2    Newman, J.3
  • 145
    • 84876836349 scopus 로고    scopus 로고
    • Decoupling hydrogen and oxygen evolution during water splitting using a proton-coupled-electron buffer
    • Symes, M. D., Cronin, L. Decoupling hydrogen and oxygen evolution during water splitting using a proton-coupled-electron buffer. Nat. Chem. 5, 403-409 (2013).
    • (2013) Nat. Chem. , vol.5 , pp. 403-409
    • Symes, M.D.1    Cronin, L.2
  • 146
    • 84884497711 scopus 로고    scopus 로고
    • Bio-inspired small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting
    • Rausch, B., Symes, M. D., Cronin, L. A. Bio-inspired, small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting. J. Am. Chem. Soc. 135, 13656-13659 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 13656-13659
    • Rausch, B.1    Symes, M.D.2    Cronin, L.A.3
  • 147
    • 84907201012 scopus 로고    scopus 로고
    • Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting
    • Rausch, B., Symes, M. D., Chisholm, G., Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345, 1326-1330 (2014).
    • (2014) Science , vol.345 , pp. 1326-1330
    • Rausch, B.1    Symes, M.D.2    Chisholm, G.3    Cronin, L.4
  • 148
    • 84973349071 scopus 로고    scopus 로고
    • Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer
    • Bloor, L. G. et al. Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer. J. Am. Chem. Soc. 138, 6707-6710 (2016).
    • (2016) J. Am. Chem. Soc. , vol.138 , pp. 6707-6710
    • Bloor, L.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.