메뉴 건너뛰기




Volumn 9, Issue 5, 2015, Pages 1119-1125

Big data technologies: New opportunities for diabetes management

Author keywords

Big data; Data analytics; Data integration; Diabetes mellitus; Information technology

Indexed keywords

BEHAVIOR; BLOOD GLUCOSE MONITORING; CLINICAL DECISION SUPPORT SYSTEM; DATA ANALYSIS; DATA MINING; DIABETES MELLITUS; ENVIRONMENTAL IMPACT; GEOGRAPHIC INFORMATION SYSTEM; HEALTH CARE; HOSPITALIZATION; HUMAN; LIFESTYLE; MEDICAL INFORMATION; PATIENT CARE; REMOTE SENSING; REVIEW; SECONDARY HEALTH CARE; DISEASE MANAGEMENT; FACTUAL DATABASE; HEALTH CARE DELIVERY;

EID: 85018214753     PISSN: None     EISSN: 19322968     Source Type: Journal    
DOI: 10.1177/1932296815583505     Document Type: Review
Times cited : (25)

References (41)
  • 1
    • 84903691970 scopus 로고    scopus 로고
    • Can big data transform electronic health records into learning health systems?
    • Harper E. Can big data transform electronic health records into learning health systems? Stud Health Technol Inform. 2014; 201:470-475.
    • (2014) Stud Health Technol Inform. , vol.201 , pp. 470-475
    • Harper, E.1
  • 2
    • 84929868382 scopus 로고    scopus 로고
    • Big data and biomedical informatics: A challenging opportunity
    • Bellazzi R. Big data and biomedical informatics: a challenging opportunity. Yearb Med Inform. 2014; 9(1):8-13.
    • (2014) Yearb Med Inform. , vol.9 , Issue.1 , pp. 8-13
    • Bellazzi, R.1
  • 3
    • 84888876464 scopus 로고    scopus 로고
    • Enabling large-scale biomedical analysis in the cloud
    • Lin YC, Yu CS, Lin YJ. Enabling large-scale biomedical analysis in the cloud. Biomed Res Int. 2013; 2013:185679.
    • (2013) Biomed Res Int. , vol.2013 , pp. 185679
    • Lin, Y.C.1    Yu, C.S.2    Lin, Y.J.3
  • 4
    • 84988962477 scopus 로고    scopus 로고
    • Applications of the MapReduce programming framework to clinical big data analysis: Current landscape and future trends
    • Mohammed EA, Far BH, Naugler C. Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends. BioData Min. 2014; 7:22.
    • (2014) BioData Min. , vol.7 , pp. 22
    • Mohammed, E.A.1    Far, B.H.2    Naugler, C.3
  • 5
    • 84875115346 scopus 로고    scopus 로고
    • Alternatives to relational database: Comparison of NoSQL and XML approaches for clinical data storage
    • Lee KK, Tang WC, Choi KS. Alternatives to relational database: comparison of NoSQL and XML approaches for clinical data storage. Comput Methods Programs Biomed. 2013; 110(1):99-109.
    • (2013) Comput Methods Programs Biomed. , vol.110 , Issue.1 , pp. 99-109
    • Lee, K.K.1    Tang, W.C.2    Choi, K.S.3
  • 6
    • 84910071402 scopus 로고    scopus 로고
    • Big data analysis in healthcare
    • Ryu S, Song TM. Big data analysis in healthcare. Healthc Inform Res. 2014; 20(4):247-248.
    • (2014) Healthc Inform Res. , vol.20 , Issue.4 , pp. 247-248
    • Ryu, S.1    Song, T.M.2
  • 7
    • 84901794133 scopus 로고    scopus 로고
    • Learning from big health care data
    • Schneeweiss S. Learning from big health care data. N Engl J Med. 2014; 370(23):2161-2163.
    • (2014) N Engl J Med. , vol.370 , Issue.23 , pp. 2161-2163
    • Schneeweiss, S.1
  • 8
    • 84929050576 scopus 로고    scopus 로고
    • The national institutes of health's big data to knowledge (BD2K) initiative: Capitalizing on biomedical big data
    • Margolis R, Derr L, Dunn M, et al. The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J Am Med Inform Assoc. 2014; 21(6):957-958.
    • (2014) J Am Med Inform Assoc. , vol.21 , Issue.6 , pp. 957-958
    • Margolis, R.1    Derr, L.2    Dunn, M.3
  • 9
    • 84908147334 scopus 로고    scopus 로고
    • Patient-centered outcomes research institute. The PCORI perspective on patient-centered outcomes research
    • Frank L, Basch E, Selby JV, Patient-Centered Outcomes Research Institute. The PCORI perspective on patient-centered outcomes research. JAMA. 2014; 312(15):1513-1514.
    • (2014) JAMA , vol.312 , Issue.15 , pp. 1513-1514
    • Frank, L.1    Basch, E.2    Selby, J.V.3
  • 10
    • 85028556894 scopus 로고    scopus 로고
    • Big heart data: Advancing health informatics through data sharing in cardiovascular imaging [published online ahead of print November 14, 2014]
    • Suinesiaputra A, Cowan B, Medrano-Gracia P, Young A. Big heart data: advancing health informatics through data sharing in cardiovascular imaging [published online ahead of print November 14, 2014]. IEEE J Biomed Health Inform.
    • IEEE J Biomed Health Inform
    • Suinesiaputra, A.1    Cowan, B.2    Medrano-Gracia, P.3    Young, A.4
  • 11
    • 84901822612 scopus 로고    scopus 로고
    • An informatics approach to medication adherence assessment and improvement using clinical, billing, and patient-entered data
    • Dixon BE, Jabour AM, Phillips EO, Marrero DG. An informatics approach to medication adherence assessment and improvement using clinical, billing, and patient-entered data. J Am Med Inform Assoc. 2014; 21(3):517-521.
    • (2014) J Am Med Inform Assoc. , vol.21 , Issue.3 , pp. 517-521
    • Dixon, B.E.1    Jabour, A.M.2    Phillips, E.O.3    Marrero, D.G.4
  • 12
    • 85017287635 scopus 로고    scopus 로고
    • Big data, smart homes and ambient assisted living
    • Vimarlund V, Wass S. Big data, smart homes and ambient assisted living. Yearb Med Inform. 2014; 9(1):143-149.
    • (2014) Yearb Med Inform. , vol.9 , Issue.1 , pp. 143-149
    • Vimarlund, V.1    Wass, S.2
  • 13
    • 84912049777 scopus 로고    scopus 로고
    • Behavior life style analysis for mobile sensory data in cloud computing through MapReduce
    • Hussain S, Bang JH, Han M, et al. Behavior life style analysis for mobile sensory data in cloud computing through MapReduce. Sensors (Basel). 2014; 14(11):22001-22020.
    • (2014) Sensors (Basel) , vol.14 , Issue.11 , pp. 22001-22020
    • Hussain, S.1    Bang, J.H.2    Han, M.3
  • 14
    • 84957079467 scopus 로고    scopus 로고
    • Big data in science and healthcare: A review of recent literature and perspectives. Contribution of the IMIA social media working group
    • Hansen MM, Miron-Shatz T, Lau AY, Paton C. Big data in science and healthcare: a review of recent literature and perspectives. Contribution of the IMIA Social Media Working Group. Yearb Med Inform. 2014; 9(1):21-26.
    • (2014) Yearb Med Inform. , vol.9 , Issue.1 , pp. 21-26
    • Hansen, M.M.1    Miron-Shatz, T.2    Lau, A.Y.3    Paton, C.4
  • 16
    • 85017289099 scopus 로고    scopus 로고
    • EHR big data deep phenotyping. Contribution of the IMIA genomic medicine working group
    • Frey LJ, Lenert L, Lopez-Campos G. EHR big data deep phenotyping. Contribution of the IMIA Genomic Medicine Working Group. Yearb Med Inform. 2014; 9(1):206-211.
    • (2014) Yearb Med Inform. , vol.9 , Issue.1 , pp. 206-211
    • Frey, L.J.1    Lenert, L.2    Lopez-Campos, G.3
  • 17
    • 84891750628 scopus 로고    scopus 로고
    • NCBI's database of genotypes and phenotypes: Dbgap
    • data-base issue
    • Tryka KA, Hao L, Sturcke A, et al. NCBI's database of genotypes and phenotypes: dbGaP. Nucleic Acids Res. 2014; 42(data-base issue):D975-D979.
    • (2014) Nucleic Acids Res. , vol.42 , pp. D975-D979
    • Tryka, K.A.1    Hao, L.2    Sturcke, A.3
  • 18
    • 84880059657 scopus 로고    scopus 로고
    • The electronic medical records and genomics (eMERGE) network: Past, present, and future
    • Gottesman O, Kuivaniemi H, Tromp G, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med. 2013; 15(10):761-771.
    • (2013) Genet Med. , vol.15 , Issue.10 , pp. 761-771
    • Gottesman, O.1    Kuivaniemi, H.2    Tromp, G.3
  • 20
    • 84896403138 scopus 로고    scopus 로고
    • A contrast between children and adolescents with excellent and poor control: The T1D exchange clinic registry experience
    • Campbell MS, Schatz DA, Chen V, et al. A contrast between children and adolescents with excellent and poor control: the T1D Exchange clinic registry experience. Pediatr Diabetes. 2014; 15(2):110-117.
    • (2014) Pediatr Diabetes , vol.15 , Issue.2 , pp. 110-117
    • Campbell, M.S.1    Schatz, D.A.2    Chen, V.3
  • 21
    • 84916882868 scopus 로고    scopus 로고
    • Big data and ambulatory care: Breaking down legal barriers to support effective use
    • Thorpe JH, Gray EA. Big data and ambulatory care: breaking down legal barriers to support effective use. J Ambul Care Manage. 2015; 38(1):29-38.
    • (2015) J Ambul Care Manage , vol.38 , Issue.1 , pp. 29-38
    • Thorpe, J.H.1    Gray, E.A.2
  • 22
    • 84870479826 scopus 로고    scopus 로고
    • Trustworthy reuse of health data: A transnational perspective
    • Geissbuhler A, Safran C, Buchan I, et al. Trustworthy reuse of health data: a transnational perspective. Int J Med Inform. 2013; 82(1):1-9.
    • (2013) Int J Med Inform. , vol.82 , Issue.1 , pp. 1-9
    • Geissbuhler, A.1    Safran, C.2    Buchan, I.3
  • 23
    • 84896056107 scopus 로고    scopus 로고
    • Big data. The parable of google flu: Traps in big data analysis
    • Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science. 2014; 343(6176):1203-1205.
    • (2014) Science , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 24
    • 84890550292 scopus 로고    scopus 로고
    • Rates and risk of hospitalisation among patients with type 2 diabetes: Retrospective cohort study using the UK general practice research database linked to English hospital episode statistics
    • Khalid JM, Raluy-Callado M, Curtis BH, Boye KS, Maguire A, Reaney M. Rates and risk of hospitalisation among patients with type 2 diabetes: retrospective cohort study using the UK General Practice Research Database linked to English Hospital Episode Statistics. Int J Clin Pract. 2014; 68(1):40-48.
    • (2014) Int J Clin Pract. , vol.68 , Issue.1 , pp. 40-48
    • Khalid, J.M.1    Raluy-Callado, M.2    Curtis, B.H.3    Boye, K.S.4    Maguire, A.5    Reaney, M.6
  • 25
    • 84884494635 scopus 로고    scopus 로고
    • Predictors of medication adherence in patients with type 2 diabetes mellitus
    • Curkendall SM, Thomas N, Bell KF, Juneau PL, Weiss AJ. Predictors of medication adherence in patients with type 2 diabetes mellitus. Curr Med Res Opin. 2013; 29(10):1275-1286.
    • (2013) Curr Med Res Opin. , vol.29 , Issue.10 , pp. 1275-1286
    • Curkendall, S.M.1    Thomas, N.2    Bell, K.F.3    Juneau, P.L.4    Weiss, A.J.5
  • 26
    • 77955873389 scopus 로고    scopus 로고
    • Data mining technologies for blood glucose and diabetes management
    • Bellazzi R, Abu-Hanna A. Data mining technologies for blood glucose and diabetes management. J Diabetes Sci Technol. 2009; 3(3):603-612.
    • (2009) J Diabetes Sci Technol. , vol.3 , Issue.3 , pp. 603-612
    • Bellazzi, R.1    Abu-Hanna, A.2
  • 27
    • 84934272759 scopus 로고    scopus 로고
    • Exploration of patterns predicting renal damage in patients with diabetes type II using a visual temporal analysis laboratory [published online ahead of print October 28, 2014]
    • Klimov D, Shknevsky A, Shahar Y. Exploration of patterns predicting renal damage in patients with diabetes type II using a visual temporal analysis laboratory [published online ahead of print October 28, 2014]. J Am Med Inform Assoc. doi:10.1136/amiajnl-2014-002927.
    • J Am Med Inform Assoc
    • Klimov, D.1    Shknevsky, A.2    Shahar, Y.3
  • 28
    • 85050154416 scopus 로고    scopus 로고
    • The use of sequential pattern mining to predict next prescribed medications [published online ahead of print September 16, 2014]
    • Wright AP, Wright AT, McCoy AB, Sittig DF. The use of sequential pattern mining to predict next prescribed medications [published online ahead of print September 16, 2014]. J Biomed Inform.
    • J Biomed Inform.
    • Wright, A.P.1    Wright, A.T.2    McCoy, A.B.3    Sittig, D.F.4
  • 29
    • 84954625373 scopus 로고    scopus 로고
    • Mining data when technology is applied to support patients and professional on the control of chronic diseases: The experience of the METABO platform for diabetes management
    • Fico G, Arredondo MT, Protopappas V, Georgia E, Fotiadis D. Mining data when technology is applied to support patients and professional on the control of chronic diseases: the experience of the METABO platform for diabetes management. Methods Mol Biol. 2015; 1246:191-216.
    • (2015) Methods Mol Biol. , vol.1246 , pp. 191-216
    • Fico, G.1    Arredondo, M.T.2    Protopappas, V.3    Georgia, E.4    Fotiadis, D.5
  • 30
    • 84992236292 scopus 로고    scopus 로고
    • Monitoring artificial pancreas trials through agent-based technologies: A case report
    • Lanzola G, Scarpellini S, Di Palma F, et al. Monitoring artificial pancreas trials through agent-based technologies: a case report. J Diabetes Sci Technol. 2014; 8(2):216-224.
    • (2014) J Diabetes Sci Technol. , vol.8 , Issue.2 , pp. 216-224
    • Lanzola, G.1    Scarpellini, S.2    Di Palma, F.3
  • 32
    • 84903551043 scopus 로고    scopus 로고
    • Safety of outpatient closed-loop control: First randomized crossover trials of a wearable artificial pancreas
    • Kovatchev BP, Renard E, Cobelli C, et al. Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas. Diabetes Care. 2014; 37(7): 1789-1796.
    • (2014) Diabetes Care , vol.37 , Issue.7 , pp. 1789-1796
    • Kovatchev, B.P.1    Renard, E.2    Cobelli, C.3
  • 33
    • 84880939022 scopus 로고    scopus 로고
    • Dynamic self-adaptive remote health monitoring system for diabetics
    • Suh MK, Moin T, Woodbridge J, et al. Dynamic self-adaptive remote health monitoring system for diabetics. Conf Proc IEEE Eng Med Biol Soc. 2012; 2012:2223-2236.
    • (2012) Conf Proc IEEE Eng Med Biol Soc. , vol.2012 , pp. 2223-2236
    • Suh, M.K.1    Moin, T.2    Woodbridge, J.3
  • 34
    • 84885610048 scopus 로고    scopus 로고
    • Evaluation of stream mining classifiers for real-time clinical decision support system: A case study of blood glucose prediction in diabetes therapy
    • Fong S, Zhang Y, Fiaidhi J, Mohammed O, Mohammed S. Evaluation of stream mining classifiers for real-time clinical decision support system: a case study of blood glucose prediction in diabetes therapy. Biomed Res Int. 2013; 2013:274193.
    • (2013) Biomed Res Int. , vol.2013 , pp. 274193
    • Fong, S.1    Zhang, Y.2    Fiaidhi, J.3    Mohammed, O.4    Mohammed, S.5
  • 35
    • 84920851796 scopus 로고    scopus 로고
    • An open source software for fast grid-based data-mining in spatial epidemiology (FGBASE)
    • Baker DM, Valleron AJ. An open source software for fast grid-based data-mining in spatial epidemiology (FGBASE). Int J Health Geogr. 2014; 13(1):46.
    • (2014) Int J Health Geogr. , vol.13 , Issue.1 , pp. 46
    • Baker, D.M.1    Valleron, A.J.2
  • 36
    • 84901822324 scopus 로고    scopus 로고
    • Exposome informatics: Considerations for the design of future biomedical research information systems
    • Martin Sanchez F, Gray K, Bellazzi R, Lopez-Campos G. Exposome informatics: considerations for the design of future biomedical research information systems. J Am Med Inform Assoc. 2014; 21(3):386-390.
    • (2014) J Am Med Inform Assoc. , vol.21 , Issue.3 , pp. 386-390
    • Martin Sanchez, F.1    Gray, K.2    Bellazzi, R.3    Lopez-Campos, G.4
  • 37
    • 85026284060 scopus 로고    scopus 로고
    • Open-source framework for integrating and visualising multimodal data from geolocation, diabetes and exercise devices
    • Wendel J, Heintzman ND, Open-source framework for integrating and visualising multimodal data from geolocation, diabetes and exercise devices. Diabetes Technol Ther. 2013; 15:A117-A118.
    • (2013) Diabetes Technol Ther. , vol.15 , pp. A117-A118
    • Wendel, J.1    Heintzman, N.D.2
  • 38
    • 77953170556 scopus 로고    scopus 로고
    • Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2)
    • Murphy SN, Weber G, Mendis M, et al. Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). J Am Med Inform Assoc. 2010; 17(2): 124-130.
    • (2010) J Am Med Inform Assoc. , vol.17 , Issue.2 , pp. 124-130
    • Murphy, S.N.1    Weber, G.2    Mendis, M.3
  • 41
    • 84921727487 scopus 로고    scopus 로고
    • Analyzing complex patients' temporal histories: New frontiers in temporal data mining
    • Sacchi L, Dagliati A, Bellazzi R. Analyzing complex patients' temporal histories: new frontiers in temporal data mining. Methods Mol Biol. 2015; 1246:89-105.
    • (2015) Methods Mol Biol. , vol.1246 , pp. 89-105
    • Sacchi, L.1    Dagliati, A.2    Bellazzi, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.