-
1
-
-
84903691970
-
Can big data transform electronic health records into learning health systems?
-
Harper E. Can big data transform electronic health records into learning health systems? Stud Health Technol Inform. 2014; 201:470-475.
-
(2014)
Stud Health Technol Inform.
, vol.201
, pp. 470-475
-
-
Harper, E.1
-
2
-
-
84929868382
-
Big data and biomedical informatics: A challenging opportunity
-
Bellazzi R. Big data and biomedical informatics: a challenging opportunity. Yearb Med Inform. 2014; 9(1):8-13.
-
(2014)
Yearb Med Inform.
, vol.9
, Issue.1
, pp. 8-13
-
-
Bellazzi, R.1
-
3
-
-
84888876464
-
Enabling large-scale biomedical analysis in the cloud
-
Lin YC, Yu CS, Lin YJ. Enabling large-scale biomedical analysis in the cloud. Biomed Res Int. 2013; 2013:185679.
-
(2013)
Biomed Res Int.
, vol.2013
, pp. 185679
-
-
Lin, Y.C.1
Yu, C.S.2
Lin, Y.J.3
-
4
-
-
84988962477
-
Applications of the MapReduce programming framework to clinical big data analysis: Current landscape and future trends
-
Mohammed EA, Far BH, Naugler C. Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends. BioData Min. 2014; 7:22.
-
(2014)
BioData Min.
, vol.7
, pp. 22
-
-
Mohammed, E.A.1
Far, B.H.2
Naugler, C.3
-
5
-
-
84875115346
-
Alternatives to relational database: Comparison of NoSQL and XML approaches for clinical data storage
-
Lee KK, Tang WC, Choi KS. Alternatives to relational database: comparison of NoSQL and XML approaches for clinical data storage. Comput Methods Programs Biomed. 2013; 110(1):99-109.
-
(2013)
Comput Methods Programs Biomed.
, vol.110
, Issue.1
, pp. 99-109
-
-
Lee, K.K.1
Tang, W.C.2
Choi, K.S.3
-
6
-
-
84910071402
-
Big data analysis in healthcare
-
Ryu S, Song TM. Big data analysis in healthcare. Healthc Inform Res. 2014; 20(4):247-248.
-
(2014)
Healthc Inform Res.
, vol.20
, Issue.4
, pp. 247-248
-
-
Ryu, S.1
Song, T.M.2
-
7
-
-
84901794133
-
Learning from big health care data
-
Schneeweiss S. Learning from big health care data. N Engl J Med. 2014; 370(23):2161-2163.
-
(2014)
N Engl J Med.
, vol.370
, Issue.23
, pp. 2161-2163
-
-
Schneeweiss, S.1
-
8
-
-
84929050576
-
The national institutes of health's big data to knowledge (BD2K) initiative: Capitalizing on biomedical big data
-
Margolis R, Derr L, Dunn M, et al. The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J Am Med Inform Assoc. 2014; 21(6):957-958.
-
(2014)
J Am Med Inform Assoc.
, vol.21
, Issue.6
, pp. 957-958
-
-
Margolis, R.1
Derr, L.2
Dunn, M.3
-
9
-
-
84908147334
-
Patient-centered outcomes research institute. The PCORI perspective on patient-centered outcomes research
-
Frank L, Basch E, Selby JV, Patient-Centered Outcomes Research Institute. The PCORI perspective on patient-centered outcomes research. JAMA. 2014; 312(15):1513-1514.
-
(2014)
JAMA
, vol.312
, Issue.15
, pp. 1513-1514
-
-
Frank, L.1
Basch, E.2
Selby, J.V.3
-
10
-
-
85028556894
-
Big heart data: Advancing health informatics through data sharing in cardiovascular imaging [published online ahead of print November 14, 2014]
-
Suinesiaputra A, Cowan B, Medrano-Gracia P, Young A. Big heart data: advancing health informatics through data sharing in cardiovascular imaging [published online ahead of print November 14, 2014]. IEEE J Biomed Health Inform.
-
IEEE J Biomed Health Inform
-
-
Suinesiaputra, A.1
Cowan, B.2
Medrano-Gracia, P.3
Young, A.4
-
11
-
-
84901822612
-
An informatics approach to medication adherence assessment and improvement using clinical, billing, and patient-entered data
-
Dixon BE, Jabour AM, Phillips EO, Marrero DG. An informatics approach to medication adherence assessment and improvement using clinical, billing, and patient-entered data. J Am Med Inform Assoc. 2014; 21(3):517-521.
-
(2014)
J Am Med Inform Assoc.
, vol.21
, Issue.3
, pp. 517-521
-
-
Dixon, B.E.1
Jabour, A.M.2
Phillips, E.O.3
Marrero, D.G.4
-
12
-
-
85017287635
-
Big data, smart homes and ambient assisted living
-
Vimarlund V, Wass S. Big data, smart homes and ambient assisted living. Yearb Med Inform. 2014; 9(1):143-149.
-
(2014)
Yearb Med Inform.
, vol.9
, Issue.1
, pp. 143-149
-
-
Vimarlund, V.1
Wass, S.2
-
13
-
-
84912049777
-
Behavior life style analysis for mobile sensory data in cloud computing through MapReduce
-
Hussain S, Bang JH, Han M, et al. Behavior life style analysis for mobile sensory data in cloud computing through MapReduce. Sensors (Basel). 2014; 14(11):22001-22020.
-
(2014)
Sensors (Basel)
, vol.14
, Issue.11
, pp. 22001-22020
-
-
Hussain, S.1
Bang, J.H.2
Han, M.3
-
14
-
-
84957079467
-
Big data in science and healthcare: A review of recent literature and perspectives. Contribution of the IMIA social media working group
-
Hansen MM, Miron-Shatz T, Lau AY, Paton C. Big data in science and healthcare: a review of recent literature and perspectives. Contribution of the IMIA Social Media Working Group. Yearb Med Inform. 2014; 9(1):21-26.
-
(2014)
Yearb Med Inform.
, vol.9
, Issue.1
, pp. 21-26
-
-
Hansen, M.M.1
Miron-Shatz, T.2
Lau, A.Y.3
Paton, C.4
-
16
-
-
85017289099
-
EHR big data deep phenotyping. Contribution of the IMIA genomic medicine working group
-
Frey LJ, Lenert L, Lopez-Campos G. EHR big data deep phenotyping. Contribution of the IMIA Genomic Medicine Working Group. Yearb Med Inform. 2014; 9(1):206-211.
-
(2014)
Yearb Med Inform.
, vol.9
, Issue.1
, pp. 206-211
-
-
Frey, L.J.1
Lenert, L.2
Lopez-Campos, G.3
-
17
-
-
84891750628
-
NCBI's database of genotypes and phenotypes: Dbgap
-
data-base issue
-
Tryka KA, Hao L, Sturcke A, et al. NCBI's database of genotypes and phenotypes: dbGaP. Nucleic Acids Res. 2014; 42(data-base issue):D975-D979.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. D975-D979
-
-
Tryka, K.A.1
Hao, L.2
Sturcke, A.3
-
18
-
-
84880059657
-
The electronic medical records and genomics (eMERGE) network: Past, present, and future
-
Gottesman O, Kuivaniemi H, Tromp G, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med. 2013; 15(10):761-771.
-
(2013)
Genet Med.
, vol.15
, Issue.10
, pp. 761-771
-
-
Gottesman, O.1
Kuivaniemi, H.2
Tromp, G.3
-
19
-
-
84897119635
-
Challenges and future directions of the T1D exchange clinic network and registry
-
Miller KM, Xing D, Tamborlane WV, Bergenstal RM, Beck RW. Challenges and future directions of the T1D Exchange Clinic Network and registry. J Diabetes Sci Technol. 2013; 7(4):963-969.
-
(2013)
J Diabetes Sci Technol.
, vol.7
, Issue.4
, pp. 963-969
-
-
Miller, K.M.1
Xing, D.2
Tamborlane, W.V.3
Bergenstal, R.M.4
Beck, R.W.5
-
20
-
-
84896403138
-
A contrast between children and adolescents with excellent and poor control: The T1D exchange clinic registry experience
-
Campbell MS, Schatz DA, Chen V, et al. A contrast between children and adolescents with excellent and poor control: the T1D Exchange clinic registry experience. Pediatr Diabetes. 2014; 15(2):110-117.
-
(2014)
Pediatr Diabetes
, vol.15
, Issue.2
, pp. 110-117
-
-
Campbell, M.S.1
Schatz, D.A.2
Chen, V.3
-
21
-
-
84916882868
-
Big data and ambulatory care: Breaking down legal barriers to support effective use
-
Thorpe JH, Gray EA. Big data and ambulatory care: breaking down legal barriers to support effective use. J Ambul Care Manage. 2015; 38(1):29-38.
-
(2015)
J Ambul Care Manage
, vol.38
, Issue.1
, pp. 29-38
-
-
Thorpe, J.H.1
Gray, E.A.2
-
22
-
-
84870479826
-
Trustworthy reuse of health data: A transnational perspective
-
Geissbuhler A, Safran C, Buchan I, et al. Trustworthy reuse of health data: a transnational perspective. Int J Med Inform. 2013; 82(1):1-9.
-
(2013)
Int J Med Inform.
, vol.82
, Issue.1
, pp. 1-9
-
-
Geissbuhler, A.1
Safran, C.2
Buchan, I.3
-
23
-
-
84896056107
-
Big data. The parable of google flu: Traps in big data analysis
-
Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science. 2014; 343(6176):1203-1205.
-
(2014)
Science
, vol.343
, Issue.6176
, pp. 1203-1205
-
-
Lazer, D.1
Kennedy, R.2
King, G.3
Vespignani, A.4
-
24
-
-
84890550292
-
Rates and risk of hospitalisation among patients with type 2 diabetes: Retrospective cohort study using the UK general practice research database linked to English hospital episode statistics
-
Khalid JM, Raluy-Callado M, Curtis BH, Boye KS, Maguire A, Reaney M. Rates and risk of hospitalisation among patients with type 2 diabetes: retrospective cohort study using the UK General Practice Research Database linked to English Hospital Episode Statistics. Int J Clin Pract. 2014; 68(1):40-48.
-
(2014)
Int J Clin Pract.
, vol.68
, Issue.1
, pp. 40-48
-
-
Khalid, J.M.1
Raluy-Callado, M.2
Curtis, B.H.3
Boye, K.S.4
Maguire, A.5
Reaney, M.6
-
25
-
-
84884494635
-
Predictors of medication adherence in patients with type 2 diabetes mellitus
-
Curkendall SM, Thomas N, Bell KF, Juneau PL, Weiss AJ. Predictors of medication adherence in patients with type 2 diabetes mellitus. Curr Med Res Opin. 2013; 29(10):1275-1286.
-
(2013)
Curr Med Res Opin.
, vol.29
, Issue.10
, pp. 1275-1286
-
-
Curkendall, S.M.1
Thomas, N.2
Bell, K.F.3
Juneau, P.L.4
Weiss, A.J.5
-
26
-
-
77955873389
-
Data mining technologies for blood glucose and diabetes management
-
Bellazzi R, Abu-Hanna A. Data mining technologies for blood glucose and diabetes management. J Diabetes Sci Technol. 2009; 3(3):603-612.
-
(2009)
J Diabetes Sci Technol.
, vol.3
, Issue.3
, pp. 603-612
-
-
Bellazzi, R.1
Abu-Hanna, A.2
-
27
-
-
84934272759
-
Exploration of patterns predicting renal damage in patients with diabetes type II using a visual temporal analysis laboratory [published online ahead of print October 28, 2014]
-
Klimov D, Shknevsky A, Shahar Y. Exploration of patterns predicting renal damage in patients with diabetes type II using a visual temporal analysis laboratory [published online ahead of print October 28, 2014]. J Am Med Inform Assoc. doi:10.1136/amiajnl-2014-002927.
-
J Am Med Inform Assoc
-
-
Klimov, D.1
Shknevsky, A.2
Shahar, Y.3
-
28
-
-
85050154416
-
The use of sequential pattern mining to predict next prescribed medications [published online ahead of print September 16, 2014]
-
Wright AP, Wright AT, McCoy AB, Sittig DF. The use of sequential pattern mining to predict next prescribed medications [published online ahead of print September 16, 2014]. J Biomed Inform.
-
J Biomed Inform.
-
-
Wright, A.P.1
Wright, A.T.2
McCoy, A.B.3
Sittig, D.F.4
-
29
-
-
84954625373
-
Mining data when technology is applied to support patients and professional on the control of chronic diseases: The experience of the METABO platform for diabetes management
-
Fico G, Arredondo MT, Protopappas V, Georgia E, Fotiadis D. Mining data when technology is applied to support patients and professional on the control of chronic diseases: the experience of the METABO platform for diabetes management. Methods Mol Biol. 2015; 1246:191-216.
-
(2015)
Methods Mol Biol.
, vol.1246
, pp. 191-216
-
-
Fico, G.1
Arredondo, M.T.2
Protopappas, V.3
Georgia, E.4
Fotiadis, D.5
-
30
-
-
84992236292
-
Monitoring artificial pancreas trials through agent-based technologies: A case report
-
Lanzola G, Scarpellini S, Di Palma F, et al. Monitoring artificial pancreas trials through agent-based technologies: a case report. J Diabetes Sci Technol. 2014; 8(2):216-224.
-
(2014)
J Diabetes Sci Technol.
, vol.8
, Issue.2
, pp. 216-224
-
-
Lanzola, G.1
Scarpellini, S.2
Di Palma, F.3
-
31
-
-
85026929506
-
Designing an artificial pancreas architecture: The AP@home experience [published online ahead of print November 28, 2014]
-
Lanzola G, Toffanin C, Di Palma F, Del Favero S, Magni L, Bellazzi R. Designing an artificial pancreas architecture: the AP@home experience [published online ahead of print November 28, 2014]. Med Biol Eng Comput.
-
Med Biol Eng Comput.
-
-
Lanzola, G.1
Toffanin, C.2
Di Palma, F.3
Del Favero, S.4
Magni, L.5
Bellazzi, R.6
-
32
-
-
84903551043
-
Safety of outpatient closed-loop control: First randomized crossover trials of a wearable artificial pancreas
-
Kovatchev BP, Renard E, Cobelli C, et al. Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas. Diabetes Care. 2014; 37(7): 1789-1796.
-
(2014)
Diabetes Care
, vol.37
, Issue.7
, pp. 1789-1796
-
-
Kovatchev, B.P.1
Renard, E.2
Cobelli, C.3
-
33
-
-
84880939022
-
Dynamic self-adaptive remote health monitoring system for diabetics
-
Suh MK, Moin T, Woodbridge J, et al. Dynamic self-adaptive remote health monitoring system for diabetics. Conf Proc IEEE Eng Med Biol Soc. 2012; 2012:2223-2236.
-
(2012)
Conf Proc IEEE Eng Med Biol Soc.
, vol.2012
, pp. 2223-2236
-
-
Suh, M.K.1
Moin, T.2
Woodbridge, J.3
-
34
-
-
84885610048
-
Evaluation of stream mining classifiers for real-time clinical decision support system: A case study of blood glucose prediction in diabetes therapy
-
Fong S, Zhang Y, Fiaidhi J, Mohammed O, Mohammed S. Evaluation of stream mining classifiers for real-time clinical decision support system: a case study of blood glucose prediction in diabetes therapy. Biomed Res Int. 2013; 2013:274193.
-
(2013)
Biomed Res Int.
, vol.2013
, pp. 274193
-
-
Fong, S.1
Zhang, Y.2
Fiaidhi, J.3
Mohammed, O.4
Mohammed, S.5
-
35
-
-
84920851796
-
An open source software for fast grid-based data-mining in spatial epidemiology (FGBASE)
-
Baker DM, Valleron AJ. An open source software for fast grid-based data-mining in spatial epidemiology (FGBASE). Int J Health Geogr. 2014; 13(1):46.
-
(2014)
Int J Health Geogr.
, vol.13
, Issue.1
, pp. 46
-
-
Baker, D.M.1
Valleron, A.J.2
-
36
-
-
84901822324
-
Exposome informatics: Considerations for the design of future biomedical research information systems
-
Martin Sanchez F, Gray K, Bellazzi R, Lopez-Campos G. Exposome informatics: considerations for the design of future biomedical research information systems. J Am Med Inform Assoc. 2014; 21(3):386-390.
-
(2014)
J Am Med Inform Assoc.
, vol.21
, Issue.3
, pp. 386-390
-
-
Martin Sanchez, F.1
Gray, K.2
Bellazzi, R.3
Lopez-Campos, G.4
-
37
-
-
85026284060
-
Open-source framework for integrating and visualising multimodal data from geolocation, diabetes and exercise devices
-
Wendel J, Heintzman ND, Open-source framework for integrating and visualising multimodal data from geolocation, diabetes and exercise devices. Diabetes Technol Ther. 2013; 15:A117-A118.
-
(2013)
Diabetes Technol Ther.
, vol.15
, pp. A117-A118
-
-
Wendel, J.1
Heintzman, N.D.2
-
38
-
-
77953170556
-
Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2)
-
Murphy SN, Weber G, Mendis M, et al. Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). J Am Med Inform Assoc. 2010; 17(2): 124-130.
-
(2010)
J Am Med Inform Assoc.
, vol.17
, Issue.2
, pp. 124-130
-
-
Murphy, S.N.1
Weber, G.2
Mendis, M.3
-
41
-
-
84921727487
-
Analyzing complex patients' temporal histories: New frontiers in temporal data mining
-
Sacchi L, Dagliati A, Bellazzi R. Analyzing complex patients' temporal histories: new frontiers in temporal data mining. Methods Mol Biol. 2015; 1246:89-105.
-
(2015)
Methods Mol Biol.
, vol.1246
, pp. 89-105
-
-
Sacchi, L.1
Dagliati, A.2
Bellazzi, R.3
|