메뉴 건너뛰기




Volumn 19, Issue 3, 2016, Pages 1346-1359

Artificial neural network applications in the calibration of spark-ignition engines: An overview

Author keywords

Applications; Artificial neural networks; Calibration; Spark ignition engines

Indexed keywords


EID: 85017343265     PISSN: None     EISSN: 22150986     Source Type: Journal    
DOI: 10.1016/j.jestch.2016.03.003     Document Type: Review
Times cited : (86)

References (135)
  • 1
    • 0003826688 scopus 로고
    • A Survey of Variable-Valve-Actuation Technology
    • SAE International
    • [1] Ahmad, T., Theobald, M.A., A Survey of Variable-Valve-Actuation Technology. 1989, SAE International.
    • (1989)
    • Ahmad, T.1    Theobald, M.A.2
  • 2
    • 84903373934 scopus 로고    scopus 로고
    • A primer on building a hardware in the loop simulation and validation for a 6 × 4 tractor trailer model
    • [2] Ashby, R.M., Jeong, J., Rao, S.Y., Heydinger, G.J., Guenther, D.A., A primer on building a hardware in the loop simulation and validation for a 6 × 4 tractor trailer model. SAE Int. J. Commer. Veh. 7 (2014), 8–18.
    • (2014) SAE Int. J. Commer. Veh. , vol.7 , pp. 8-18
    • Ashby, R.M.1    Jeong, J.2    Rao, S.Y.3    Heydinger, G.J.4    Guenther, D.A.5
  • 3
    • 3743051518 scopus 로고
    • Perspectives on Applications of Variable Valve Timing
    • SAE International
    • [3] Asmus, T.W., Perspectives on Applications of Variable Valve Timing. 1991, SAE International.
    • (1991)
    • Asmus, T.W.1
  • 4
    • 84882832027 scopus 로고    scopus 로고
    • Dynamic Model-Based Calibration Optimization: An Introduction and Application to Diesel Engines
    • SAE International
    • [4] Atkinson, C., Mott, G., Dynamic Model-Based Calibration Optimization: An Introduction and Application to Diesel Engines. 2005, SAE International.
    • (2005)
    • Atkinson, C.1    Mott, G.2
  • 5
    • 33845902406 scopus 로고    scopus 로고
    • Virtual Sensing: A Neural Network-Based Intelligent Performance and Emissions Prediction System for On-Board Diagnostics and Engine Control
    • SAE International
    • [5] Atkinson, C.M., Long, T.W., Hanzevack, E.L., Virtual Sensing: A Neural Network-Based Intelligent Performance and Emissions Prediction System for On-Board Diagnostics and Engine Control. 1998, SAE International.
    • (1998)
    • Atkinson, C.M.1    Long, T.W.2    Hanzevack, E.L.3
  • 6
    • 34250098040 scopus 로고
    • A generalized conjugate gradient, least square method
    • [6] Axelsson, O., A generalized conjugate gradient, least square method. Numer. Math. 51 (1987), 209–227.
    • (1987) Numer. Math. , vol.51 , pp. 209-227
    • Axelsson, O.1
  • 7
    • 84861831444 scopus 로고    scopus 로고
    • Towards implementation and autonomous navigation of an intelligent automated guided vehicle in material handling systems
    • [7] Babić, B., Miljković, Z., Vuković, N., Antić, V., Towards implementation and autonomous navigation of an intelligent automated guided vehicle in material handling systems. IJST 36 (2012), 25–40.
    • (2012) IJST , vol.36 , pp. 25-40
    • Babić, B.1    Miljković, Z.2    Vuković, N.3    Antić, V.4
  • 8
    • 0000334686 scopus 로고
    • How to develop neural-network applications
    • [8] Bailey, D., Thompson, D., How to develop neural-network applications. AI Expert 5 (1990), 38–47.
    • (1990) AI Expert , vol.5 , pp. 38-47
    • Bailey, D.1    Thompson, D.2
  • 9
    • 85017377159 scopus 로고    scopus 로고
    • Application of neural networks to adaptive control of nonlinear systems
    • G.W. Ng Pergamon
    • [9] Ballini, R., Von Zuben, F.J., Application of neural networks to adaptive control of nonlinear systems. Ng, G.W., (eds.) Control Systems Centre Series, UMIST, UK, 1997, 2000 0-86380-214-1 Pergamon.
    • (2000) Control Systems Centre Series, UMIST, UK, 1997
    • Ballini, R.1    Von Zuben, F.J.2
  • 10
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: between steepest descent and Newton's method
    • [10] Battiti, R., First- and second-order methods for learning: between steepest descent and Newton's method. Neural Comput. 4 (1992), 141–166.
    • (1992) Neural Comput. , vol.4 , pp. 141-166
    • Battiti, R.1
  • 11
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • [11] Baum, E.B., Haussler, D., What size net gives valid generalization?. Neural Comput. 1 (1989), 151–160.
    • (1989) Neural Comput. , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 12
    • 0000105056 scopus 로고
    • Relating real-time backpropagation and backpropagation-through-time: an application of flow graph interreciprocity
    • [12] Beaufays, F., Wan, E.A., Relating real-time backpropagation and backpropagation-through-time: an application of flow graph interreciprocity. Neural Comput. 6 (1994), 296–306.
    • (1994) Neural Comput. , vol.6 , pp. 296-306
    • Beaufays, F.1    Wan, E.A.2
  • 13
  • 15
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • [15] Bengio, Y., Simard, P., Frasconi, P., Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5 (1994), 157–166.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 17
    • 84975209430 scopus 로고    scopus 로고
    • Modeling and Optimization for Stationary Base Engine Calibration
    • (Doctoral dissertation) Universität München
    • [17] Berger, B., Modeling and Optimization for Stationary Base Engine Calibration. (Doctoral dissertation), 2012, Universität München.
    • (2012)
    • Berger, B.1
  • 18
    • 0000588294 scopus 로고
    • Improving the generalization properties of radial basis function neural networks
    • [18] Bishop, C., Improving the generalization properties of radial basis function neural networks. Neural Comput. 3 (1991), 579–588.
    • (1991) Neural Comput. , vol.3 , pp. 579-588
    • Bishop, C.1
  • 20
    • 85017359607 scopus 로고    scopus 로고
    • Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions
    • SAE International
    • [20] Bohac, S.V., Assanis, D.N., Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions. 2004, SAE International.
    • (2004)
    • Bohac, S.V.1    Assanis, D.N.2
  • 22
    • 33745712258 scopus 로고    scopus 로고
    • A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input
    • [22] Burkitt, A.N., A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95 (2006), 1–19.
    • (2006) Biol. Cybern. , vol.95 , pp. 1-19
    • Burkitt, A.N.1
  • 23
    • 0141975345 scopus 로고    scopus 로고
    • On-line sensor fault detection, isolation, and accommodation in automotive engines
    • [23] Capriglione, D., Liguori, C., Pianese, C., Pietrosanto, A., On-line sensor fault detection, isolation, and accommodation in automotive engines. IEEE Trans. Instrum. Meas. 52 (2003), 1182–1189.
    • (2003) IEEE Trans. Instrum. Meas. , vol.52 , pp. 1182-1189
    • Capriglione, D.1    Liguori, C.2    Pianese, C.3    Pietrosanto, A.4
  • 24
    • 0028428006 scopus 로고
    • A robust backpropagation learning algorithm for function approximation
    • [24] Chen, D.S., Jain, R.C., A robust backpropagation learning algorithm for function approximation. IEEE Trans. Neural Networks 5 (1994), 467–479.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 467-479
    • Chen, D.S.1    Jain, R.C.2
  • 25
    • 77954270719 scopus 로고    scopus 로고
    • Curve fitting in least-square method and its realization with matlab
    • [25] Chen, G., Ren, Z.-L., Sun, H.-Z., Curve fitting in least-square method and its realization with matlab. Ordnance Ind. Automation, 3, 2005, 063.
    • (2005) Ordnance Ind. Automation , vol.3 , pp. 063
    • Chen, G.1    Ren, Z.-L.2    Sun, H.-Z.3
  • 26
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • [26] Chen, S., Cowan, C.F., Grant, P.M., Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks 2 (1991), 302–309.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.2    Grant, P.M.3
  • 27
    • 0029341753 scopus 로고
    • Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks
    • [27] Chen, T., Chen, H., Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks. IEEE Trans. Neural Networks 6 (1995), 904–910.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 904-910
    • Chen, T.1    Chen, H.2
  • 28
    • 0024050467 scopus 로고
    • A nonlinear controller design method for fuel-injected automotive engines
    • [28] Cho, D., Hedrick, J., A nonlinear controller design method for fuel-injected automotive engines. J. Eng. Gas Turbines Power 110 (1988), 313–320.
    • (1988) J. Eng. Gas Turbines Power , vol.110 , pp. 313-320
    • Cho, D.1    Hedrick, J.2
  • 29
    • 0026220226 scopus 로고
    • Sliding mode fuel-injection controller: its advantages
    • [29] Cho, D., Hedrick, J.K., Sliding mode fuel-injection controller: its advantages. J. Dyn. Syst. Meas. Contr. 113 (1991), 537–541.
    • (1991) J. Dyn. Syst. Meas. Contr. , vol.113 , pp. 537-541
    • Cho, D.1    Hedrick, J.K.2
  • 30
    • 0027666648 scopus 로고
    • Variable structure control method for fuel-injected systems
    • [30] Cho, D.-I.D., Oh, H.-K., Variable structure control method for fuel-injected systems. J. Dyn. Syst. Meas. Contr. 115 (1993), 475–481.
    • (1993) J. Dyn. Syst. Meas. Contr. , vol.115 , pp. 475-481
    • Cho, D.-I.D.1    Oh, H.-K.2
  • 32
    • 0004053815 scopus 로고
    • The Computational Brain
    • The Mit Press
    • [32] Churchland, P.S., Sejnowski, T.J., The Computational Brain. 1992, The Mit Press.
    • (1992)
    • Churchland, P.S.1    Sejnowski, T.J.2
  • 33
    • 0034865599 scopus 로고    scopus 로고
    • Backpropagation through time for a general class of recurrent network. Neural Networks, 2001
    • [33] De Jeses, O., Hagan, M.T., Backpropagation through time for a general class of recurrent network. Neural Networks, 2001. Proceedings of the IEEE Joint Conference on Neural Networks, 2000, 2638–2643.
    • (2000) Proceedings of the IEEE Joint Conference on Neural Networks , pp. 2638-2643
    • De Jeses, O.1    Hagan, M.T.2
  • 34
    • 0343271970 scopus 로고    scopus 로고
    • Neural Network Toolbox™ 6. User's Guide
    • [34] Demuth, H., Beale, M., Hagan, M., Neural Network Toolbox™ 6. User's Guide. 2008.
    • (2008)
    • Demuth, H.1    Beale, M.2    Hagan, M.3
  • 35
    • 3042555475 scopus 로고    scopus 로고
    • Principal component analysis of fuzzy data using autoassociative neural networks
    • [35] Denoeux, T., Masson, M.-H., Principal component analysis of fuzzy data using autoassociative neural networks. IEEE Trans. Fuzzy Syst. 12 (2004), 336–349.
    • (2004) IEEE Trans. Fuzzy Syst. , vol.12 , pp. 336-349
    • Denoeux, T.1    Masson, M.-H.2
  • 36
    • 85017346782 scopus 로고    scopus 로고
    • Virtual GDI Engine as a Tool for Model-Based Calibration
    • SAE International
    • [36] Di Gioia, R., Papaleo, D., Vicchi, F.M., Cavina, N., Virtual GDI Engine as a Tool for Model-Based Calibration. 2012, SAE International.
    • (2012)
    • Di Gioia, R.1    Papaleo, D.2    Vicchi, F.M.3    Cavina, N.4
  • 37
    • 84926345841 scopus 로고    scopus 로고
    • Regularisation methods for neural network model averaging
    • [37] Didcock, N., Jakubek, S., Kögeler, H.-M., Regularisation methods for neural network model averaging. Eng. Appl. Artif. Intell. 41 (2015), 128–138.
    • (2015) Eng. Appl. Artif. Intell. , vol.41 , pp. 128-138
    • Didcock, N.1    Jakubek, S.2    Kögeler, H.-M.3
  • 39
    • 0003619869 scopus 로고
    • A Review of Variable Valve Timing Benefits and Modes of Operation
    • SAE International
    • [39] Dresner, T., Barkan, P., A Review of Variable Valve Timing Benefits and Modes of Operation. 1989, SAE International.
    • (1989)
    • Dresner, T.1    Barkan, P.2
  • 40
    • 85011803551 scopus 로고    scopus 로고
    • Neural Model for Real-Time Engine Volumetric Efficiency Estimation
    • SAE International
    • [40] El Hadef, J., Colin, G., Talon, V., Chamaillard, Y., Neural Model for Real-Time Engine Volumetric Efficiency Estimation. 2013, SAE International.
    • (2013)
    • El Hadef, J.1    Colin, G.2    Talon, V.3    Chamaillard, Y.4
  • 41
    • 85017400434 scopus 로고    scopus 로고
    • Fixed-Point ECU Development with Model-Based Design
    • SAE International
    • [41] Erkkinen, T., Fixed-Point ECU Development with Model-Based Design. 2008, SAE International.
    • (2008)
    • Erkkinen, T.1
  • 42
    • 12344256161 scopus 로고    scopus 로고
    • Variable geometry turbine (VGT) strategies for improving diesel engine in-vehicle response: a simulation study
    • [42] Filipi, Z., Wang, Y., Assanis, D., Variable geometry turbine (VGT) strategies for improving diesel engine in-vehicle response: a simulation study. Int. J. Heavy Veh. Syst. 11 (2004), 303–326.
    • (2004) Int. J. Heavy Veh. Syst. , vol.11 , pp. 303-326
    • Filipi, Z.1    Wang, Y.2    Assanis, D.3
  • 43
    • 14044265210 scopus 로고    scopus 로고
    • The Third Generation of Valvetrains – New Fully Variable Valvetrains for Throttle-Free Load Control
    • SAE International
    • [43] Flierl, R., Klüting, M., The Third Generation of Valvetrains – New Fully Variable Valvetrains for Throttle-Free Load Control. 2000, SAE International.
    • (2000)
    • Flierl, R.1    Klüting, M.2
  • 44
    • 38249015176 scopus 로고
    • An efficient sampling scheme: updated Latin hypercube sampling
    • [44] Florian, A., An efficient sampling scheme: updated Latin hypercube sampling. Probab. Eng. Mech. 7 (1992), 123–130.
    • (1992) Probab. Eng. Mech. , vol.7 , pp. 123-130
    • Florian, A.1
  • 45
    • 0000177088 scopus 로고    scopus 로고
    • Key concepts in model selection: performance and generalizability
    • [45] Forster, M.R., Key concepts in model selection: performance and generalizability. J. Math. Psychol. 44 (2000), 205–231.
    • (2000) J. Math. Psychol. , vol.44 , pp. 205-231
    • Forster, M.R.1
  • 46
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • [46] Funahashi, K.-I., Nakamura, Y., Approximation of dynamical systems by continuous time recurrent neural networks. Neural Networks 6 (1993), 801–806.
    • (1993) Neural Networks , vol.6 , pp. 801-806
    • Funahashi, K.-I.1    Nakamura, Y.2
  • 47
    • 85017386674 scopus 로고    scopus 로고
    • A Fully Variable Hydraulic Valve Train Concept with Continuous Measuring of the Valve Lift Movement
    • SAE International
    • [48] Getzlaff, J., Dost, T., Lambert, T., Lenk, E., A Fully Variable Hydraulic Valve Train Concept with Continuous Measuring of the Valve Lift Movement. 2015, SAE International.
    • (2015)
    • Getzlaff, J.1    Dost, T.2    Lambert, T.3    Lenk, E.4
  • 48
    • 84898932856 scopus 로고    scopus 로고
    • Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. Advances in Neural Information Processing Systems 13
    • MIT Press
    • [49] Giles, R.C.S.L.L., Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. Advances in Neural Information Processing Systems 13. Proceedings of the 2000 Conference, 2001, MIT Press, 402.
    • (2001) Proceedings of the 2000 Conference , pp. 402
    • Giles, R.C.S.L.L.1
  • 49
    • 33845689247 scopus 로고    scopus 로고
    • A multi-model approach to analysis of environmental phenomena
    • [50] Giustolisi, O., Doglioni, A., Savic, D., Webb, B., A multi-model approach to analysis of environmental phenomena. Environ. Model. Softw. 22 (2007), 674–682.
    • (2007) Environ. Model. Softw. , vol.22 , pp. 674-682
    • Giustolisi, O.1    Doglioni, A.2    Savic, D.3    Webb, B.4
  • 50
    • 0003473120 scopus 로고
    • Adaptive Filtering Prediction and Control
    • Prentice-Hall
    • [51] Goodwin, G., Sin, K., Adaptive Filtering Prediction and Control. 1984, Prentice-Hall.
    • (1984)
    • Goodwin, G.1    Sin, K.2
  • 51
    • 84886633392 scopus 로고    scopus 로고
    • Investigations on a catalyst heating strategy by variable valve train for SI engines
    • [52] Gottschalk, W., Kirstein, G., Magnor, O., Schultalbers, M., Wetten, R., Investigations on a catalyst heating strategy by variable valve train for SI engines. SAE Int. J. Engines 5 (2012), 1177–1200.
    • (2012) SAE Int. J. Engines , vol.5 , pp. 1177-1200
    • Gottschalk, W.1    Kirstein, G.2    Magnor, O.3    Schultalbers, M.4    Wetten, R.5
  • 52
    • 0003647434 scopus 로고
    • A Review of Variable Engine Valve Timing
    • SAE International
    • [53] Gray, C., A Review of Variable Engine Valve Timing. 1988, SAE International.
    • (1988)
    • Gray, C.1
  • 53
    • 33747957268 scopus 로고    scopus 로고
    • On Board Diagnosis of Internal Combustion Engines: A New Model Definition and Experimental Validation
    • SAE International
    • [54] Grimaldi, C.N., Mariani, F., On Board Diagnosis of Internal Combustion Engines: A New Model Definition and Experimental Validation. 1997, SAE International.
    • (1997)
    • Grimaldi, C.N.1    Mariani, F.2
  • 54
    • 33748697020 scopus 로고    scopus 로고
    • Prediction of Engine Operational Parameters for On Board Diagnostics using a Free Model Technology
    • SAE International
    • [55] Grimaldi, C.N., Mariani, F., Prediction of Engine Operational Parameters for On Board Diagnostics using a Free Model Technology. 1999, SAE International.
    • (1999)
    • Grimaldi, C.N.1    Mariani, F.2
  • 55
    • 1542370181 scopus 로고    scopus 로고
    • OBD Engine Fault Detection using a Neural Approach
    • SAE International
    • [56] Grimaldi, C.N., Mariani, F., OBD Engine Fault Detection using a Neural Approach. 2001, SAE International.
    • (2001)
    • Grimaldi, C.N.1    Mariani, F.2
  • 56
    • 33947195919 scopus 로고    scopus 로고
    • The Development of Model Based Methodologies for Gasoline IC Engine Calibration
    • SAE International
    • [57] Guerrier, M., Cawsey, P., The Development of Model Based Methodologies for Gasoline IC Engine Calibration. 2004, SAE International.
    • (2004)
    • Guerrier, M.1    Cawsey, P.2
  • 57
    • 84958078148 scopus 로고    scopus 로고
    • Advanced Statistical System Identification in Ecu-Development and Optimization
    • [58] Gutjahr, T., Kleinegraeber, H., Huber, T., Kruse, T., Advanced Statistical System Identification in Ecu-Development and Optimization. SAE Technical Paper, 2015.
    • (2015) SAE Technical Paper
    • Gutjahr, T.1    Kleinegraeber, H.2    Huber, T.3    Kruse, T.4
  • 58
    • 37249030637 scopus 로고    scopus 로고
    • Overview of Current Continuously Variable Valve Lift Systems for Four-Stroke Spark-Ignition Engines and the Criteria for their Design Ratings
    • SAE International
    • [59] Hannibal, W., Flierl, R., Stiegler, L., Meyer, R., Overview of Current Continuously Variable Valve Lift Systems for Four-Stroke Spark-Ignition Engines and the Criteria for their Design Ratings. 2004, SAE International.
    • (2004)
    • Hannibal, W.1    Flierl, R.2    Stiegler, L.3    Meyer, R.4
  • 59
    • 0003413187 scopus 로고    scopus 로고
    • Neural Networks: A Comprehensive Foundation
    • Prentice-Hall
    • [60] Haykin, S., Neural Networks: A Comprehensive Foundation. 1999, Prentice-Hall.
    • (1999)
    • Haykin, S.1
  • 60
    • 0038476492 scopus 로고    scopus 로고
    • Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
    • [61] Helton, J.C., Davis, F.J., Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 81 (2003), 23–69.
    • (2003) Reliab. Eng. Syst. Saf. , vol.81 , pp. 23-69
    • Helton, J.C.1    Davis, F.J.2
  • 61
    • 2542498934 scopus 로고
    • Transient A/F Ratio Errors in Conventional SI Engine Controllers
    • SAE International
    • [62] Hendricks, E., Jensen, M., Kaidantzis, P., Rasmussen, P., Vesterholm, T., Transient A/F Ratio Errors in Conventional SI Engine Controllers. 1993, SAE International.
    • (1993)
    • Hendricks, E.1    Jensen, M.2    Kaidantzis, P.3    Rasmussen, P.4    Vesterholm, T.5
  • 62
    • 12244304763 scopus 로고    scopus 로고
    • Occam's Razor
    • Principia Cybernetica Web
    • [63] Heylighen, F., Occam's Razor. 1997, Principia Cybernetica Web.
    • (1997)
    • Heylighen, F.1
  • 63
    • 84910134730 scopus 로고    scopus 로고
    • Hardware-in-the-Loop Testing in the Context of ISO 26262
    • SAE International
    • [64] Himmler, A., Lamberg, K., Beine, M., Hardware-in-the-Loop Testing in the Context of ISO 26262. 2012, SAE International.
    • (2012)
    • Himmler, A.1    Lamberg, K.2    Beine, M.3
  • 65
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • [66] Hornik, K., Stinchcombe, M., White, H., Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989), 359–366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 66
    • 85017382502 scopus 로고    scopus 로고
    • A research on the misfire diagnosis ff gasoline engine based on BP neural network
    • [67] Hu, J., Yan, F., A research on the misfire diagnosis ff gasoline engine based on BP neural network. Automotive Eng., 33, 2011, 5.
    • (2011) Automotive Eng. , vol.33 , pp. 5
    • Hu, J.1    Yan, F.2
  • 67
    • 84867068586 scopus 로고    scopus 로고
    • A research on the compensation control method of oxygen sensor under malfunction status
    • [68] Hu, J., Yan, F., Zhu, H., Yang, J., A research on the compensation control method of oxygen sensor under malfunction status. Automotive Eng., 34, 2012, 6.
    • (2012) Automotive Eng. , vol.34 , pp. 6
    • Hu, J.1    Yan, F.2    Zhu, H.3    Yang, J.4
  • 68
    • 0034187311 scopus 로고    scopus 로고
    • Classification ability of single hidden layer feedforward neural networks
    • [69] Huang, G.-B., Chen, Y.-Q., Babri, H., Classification ability of single hidden layer feedforward neural networks. IEEE Trans. Neural Networks 11 (2000), 799–801.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 799-801
    • Huang, G.-B.1    Chen, Y.-Q.2    Babri, H.3
  • 70
    • 0032186671 scopus 로고    scopus 로고
    • Improvements to and limitations of Latin hypercube sampling
    • [71] Huntington, D., Lyrintzis, C., Improvements to and limitations of Latin hypercube sampling. Probab. Eng. Mech. 13 (1998), 245–253.
    • (1998) Probab. Eng. Mech. , vol.13 , pp. 245-253
    • Huntington, D.1    Lyrintzis, C.2
  • 71
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: a tutorial
    • [72] Jain, A.K., Mao, J., Mohiuddin, K., Artificial neural networks: a tutorial. Computer, 1996, 31–44.
    • (1996) Computer , pp. 31-44
    • Jain, A.K.1    Mao, J.2    Mohiuddin, K.3
  • 72
    • 84960913930 scopus 로고    scopus 로고
    • Design and Development of Variable Valve Actuation (VVA) Mechanism Concept for Multi-Cylinder Engine
    • SAE International
    • [73] Jain, A., Tikar, S.S., Ramdasi, S.S., Thipse, S.S., Marathe, N.V., Ekambaram, P., Design and Development of Variable Valve Actuation (VVA) Mechanism Concept for Multi-Cylinder Engine. 2015, SAE International.
    • (2015)
    • Jain, A.1    Tikar, S.S.2    Ramdasi, S.S.3    Thipse, S.S.4    Marathe, N.V.5    Ekambaram, P.6
  • 73
    • 84889990797 scopus 로고    scopus 로고
    • Environmental Legislation as a Driver of Design
    • (Available online at: <>, accessed 20.05.2015)
    • [74] Jarratt, T., Eckert, C., Weeks, R., Clarkson, P., Environmental Legislation as a Driver of Design. 2003 (Available online at: < http://oro.open.ac.uk/13233/1/13233.pdf>, accessed 20.05.2015).
    • (2003)
    • Jarratt, T.1    Eckert, C.2    Weeks, R.3    Clarkson, P.4
  • 74
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: a tutorial
    • [75] Jian, A.K., Mao, J., Mohuiddin, K.M., Artificial neural networks: a tutorial. Computer 3 (1996), 31–44.
    • (1996) Computer , vol.3 , pp. 31-44
    • Jian, A.K.1    Mao, J.2    Mohuiddin, K.M.3
  • 75
    • 84902384003 scopus 로고    scopus 로고
    • Implementation of Model-Based Calibration for a Gasoline Engine
    • SAE International
    • [76] Jiang, S., Nutter, D., Gullitti, A., Implementation of Model-Based Calibration for a Gasoline Engine. 2012, SAE International.
    • (2012)
    • Jiang, S.1    Nutter, D.2    Gullitti, A.3
  • 76
    • 33846882032 scopus 로고    scopus 로고
    • Comparison of Black-, White-, and Grey-Box Models to predict ultimate tensile strength of high-strength hot rolled coils at the port Talbot hot strip mill
    • [77] Jones, D., Watton, J., Brown, K., Comparison of Black-, White-, and Grey-Box Models to predict ultimate tensile strength of high-strength hot rolled coils at the port Talbot hot strip mill. Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. 221 (2007), 1–9.
    • (2007) Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. , vol.221 , pp. 1-9
    • Jones, D.1    Watton, J.2    Brown, K.3
  • 77
    • 85017375663 scopus 로고    scopus 로고
    • Virtual Sensing of SI Engines using Recurrent Neural Networks
    • SAE International
    • [78] Kamat, S., Diwanji, V., Smith, J., Javaherian, H., Madhavan, K.P., Virtual Sensing of SI Engines using Recurrent Neural Networks. 2006, SAE International.
    • (2006)
    • Kamat, S.1    Diwanji, V.2    Smith, J.3    Javaherian, H.4    Madhavan, K.P.5
  • 78
    • 84859981445 scopus 로고    scopus 로고
    • Performance analysis of various activation functions in generalized MLP architectures of neural networks
    • [79] Karlik, B., Olgac, A.V., Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artificial Intell. Expert Syst. 1 (2011), 111–122.
    • (2011) Int. J. Artificial Intell. Expert Syst. , vol.1 , pp. 111-122
    • Karlik, B.1    Olgac, A.V.2
  • 79
    • 84878800108 scopus 로고    scopus 로고
    • Sequential DoE framework for steady state model based calibration
    • [80] Kianifar, M.R., Campean, L.F., Richardson, D., Sequential DoE framework for steady state model based calibration. SAE Int. J. Engines 6 (2013), 843–855.
    • (2013) SAE Int. J. Engines , vol.6 , pp. 843-855
    • Kianifar, M.R.1    Campean, L.F.2    Richardson, D.3
  • 80
    • 0026849990 scopus 로고
    • Autoassociative neural networks
    • [81] Kramer, M.A., Autoassociative neural networks. Comput. Chem. Eng. 16 (1992), 313–328.
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 313-328
    • Kramer, M.A.1
  • 81
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks—review and case studies
    • [82] Lampinen, J., Vehtari, A., Bayesian approach for neural networks—review and case studies. Neural Networks 14 (2001), 257–274.
    • (2001) Neural Networks , vol.14 , pp. 257-274
    • Lampinen, J.1    Vehtari, A.2
  • 82
    • 0033699722 scopus 로고    scopus 로고
    • Overfitting and neural networks: conjugate gradient and backpropagation. Neural networks, 2000. Ijcnn 2000
    • IEEE
    • [83] Lawrence, S., Giles, C.L., Overfitting and neural networks: conjugate gradient and backpropagation. Neural networks, 2000. Ijcnn 2000. Proceedings of the IEEE-INNS-ENNS International Joint Conference On, 2000, IEEE, 114–119.
    • (2000) Proceedings of the IEEE-INNS-ENNS International Joint Conference On , pp. 114-119
    • Lawrence, S.1    Giles, C.L.2
  • 83
    • 0003979410 scopus 로고    scopus 로고
    • What Size Neural Network gives Optimal Generalization? Convergence Properties of Backpropagation
    • [84] Lawrence, S., Giles, C.L., Tsoi, A., What Size Neural Network gives Optimal Generalization? Convergence Properties of Backpropagation. 1998.
    • (1998)
    • Lawrence, S.1    Giles, C.L.2    Tsoi, A.3
  • 84
    • 0003507749 scopus 로고    scopus 로고
    • Transient Air-Fuel Ratio Control using Artificial Intelligence
    • SAE International
    • [85] Lenz, U., Schroeder, D., Transient Air-Fuel Ratio Control using Artificial Intelligence. 1997, SAE International.
    • (1997)
    • Lenz, U.1    Schroeder, D.2
  • 85
    • 0033280266 scopus 로고    scopus 로고
    • Simultaneous training of negatively correlated neural networks in an ensemble
    • [86] Liu, Y., Yao, X., Simultaneous training of negatively correlated neural networks in an ensemble. IEEE Trans. Syst. Man Cybern. B Cybern. 29 (1999), 716–725.
    • (1999) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.29 , pp. 716-725
    • Liu, Y.1    Yao, X.2
  • 86
    • 70349660486 scopus 로고    scopus 로고
    • A brief description of the Levenberg-Marquardt algorithm implemented by Levmar
    • [87] Lourakis, M.I., A brief description of the Levenberg-Marquardt algorithm implemented by Levmar. Found. Res. Technol. 4 (2005), 1–6.
    • (2005) Found. Res. Technol. , vol.4 , pp. 1-6
    • Lourakis, M.I.1
  • 87
    • 0004043824 scopus 로고
    • Effect of Variable Engine Valve Timing on Fuel Economy
    • SAE International
    • [88] Ma, T.H., Effect of Variable Engine Valve Timing on Fuel Economy. 1988, SAE International.
    • (1988)
    • Ma, T.H.1
  • 88
    • 0036056265 scopus 로고    scopus 로고
    • Delta air-charge anticipation for mass air flow and electronic throttle control based systems
    • [89] Magner, S., Jankovic, M., Delta air-charge anticipation for mass air flow and electronic throttle control based systems. IEEE Proceedings of the American Control Conference, 2002, 1407–1412.
    • (2002) IEEE Proceedings of the American Control Conference , pp. 1407-1412
    • Magner, S.1    Jankovic, M.2
  • 89
    • 0028444696 scopus 로고
    • Neural network control of automotive fuel-injection systems
    • [90] Majors, M., Stori, J., Cho, D., Neural network control of automotive fuel-injection systems. IEEE Control Syst. Mag., 14, 1994, 5.
    • (1994) IEEE Control Syst. Mag. , vol.14 , pp. 5
    • Majors, M.1    Stori, J.2    Cho, D.3
  • 90
    • 84991281510 scopus 로고    scopus 로고
    • Replacing Volumetric Efficiency Calibration Look-Up Tables with Artificial Neural Network-Based Algorithm for Variable Valve Actuation
    • SAE International
    • [91] Malaczynski, G.W., Mueller, M., Pfeiffer, J., Cabush, D., Hoyer, K., Replacing Volumetric Efficiency Calibration Look-Up Tables with Artificial Neural Network-Based Algorithm for Variable Valve Actuation. 2010, SAE International.
    • (2010)
    • Malaczynski, G.W.1    Mueller, M.2    Pfeiffer, J.3    Cabush, D.4    Hoyer, K.5
  • 91
    • 33644880300 scopus 로고    scopus 로고
    • Fault classification in structures with incomplete measured data using autoassociative neural networks and genetic algorithm
    • [92] Marwala, T., Chakraverty, S., Fault classification in structures with incomplete measured data using autoassociative neural networks and genetic algorithm. Curr. Sci.-Bangalore, 90, 2006, 542.
    • (2006) Curr. Sci.-Bangalore , vol.90 , pp. 542
    • Marwala, T.1    Chakraverty, S.2
  • 92
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • [93] Mcculloch, W.S., Pitts, W., A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5 (1943), 115–133.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • Mcculloch, W.S.1    Pitts, W.2
  • 93
    • 85017354484 scopus 로고    scopus 로고
    • Fault Detection in Internal Combustion Engines using a Semi-Physical Neural Network Approach
    • SAE International
    • [94] Mcdowell, N., Mccullough, G., Wang, X., Kruger, U., Irwin, G.W., Fault Detection in Internal Combustion Engines using a Semi-Physical Neural Network Approach. 2007, SAE International.
    • (2007)
    • Mcdowell, N.1    Mccullough, G.2    Wang, X.3    Kruger, U.4    Irwin, G.W.5
  • 94
    • 0018468345 scopus 로고
    • Comparison of three methods for selecting values of input variables in the analysis of output from a computer code
    • [95] Mckay, M.D., Beckman, R.J., Conover, W.J., Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21 (1979), 239–245.
    • (1979) Technometrics , vol.21 , pp. 239-245
    • Mckay, M.D.1    Beckman, R.J.2    Conover, W.J.3
  • 95
    • 0003496531 scopus 로고    scopus 로고
    • Elements of Artificial Neural Networks
    • MIT Press
    • [96] Mehrotra, K., Mohan, C.K., Ranka, S., Elements of Artificial Neural Networks. 1997, MIT Press.
    • (1997)
    • Mehrotra, K.1    Mohan, C.K.2    Ranka, S.3
  • 96
    • 44849126324 scopus 로고    scopus 로고
    • New Calibration Methods and Control Systems with Artificial Neural Networks
    • SAE International
    • [97] Meyer, S., Greff, A., New Calibration Methods and Control Systems with Artificial Neural Networks. 2002, SAE International.
    • (2002)
    • Meyer, S.1    Greff, A.2
  • 97
    • 0001362410 scopus 로고
    • The Levenberg-Marquardt algorithm: implementation and theory
    • Springer
    • [98] Moré, J.J., The Levenberg-Marquardt algorithm: implementation and theory. Numer. Anal., 1978 Springer.
    • (1978) Numer. Anal.
    • Moré, J.J.1
  • 98
    • 34047198633 scopus 로고    scopus 로고
    • Approximation and Control of the Engine Torque Using Neural Networks
    • SAE International
    • [99] Müller, R., Schneider, B., Approximation and Control of the Engine Torque Using Neural Networks. 2000, SAE International.
    • (2000)
    • Müller, R.1    Schneider, B.2
  • 99
    • 0006558848 scopus 로고    scopus 로고
    • A Continuous Variable Valve Event and Lift Control Device (VEL) for Automotive Engines
    • SAE International
    • [100] Nakamura, M., Hara, S., Yamada, Y., Takeda, K., Okamoto, N., Hibi, T., Takemura, S., Aoyama, S., A Continuous Variable Valve Event and Lift Control Device (VEL) for Automotive Engines. 2001, SAE International.
    • (2001)
    • Nakamura, M.1    Hara, S.2    Yamada, Y.3    Takeda, K.4    Okamoto, N.5    Hibi, T.6    Takemura, S.7    Aoyama, S.8
  • 100
    • 44849114587 scopus 로고    scopus 로고
    • A Neural Network Based Methodology for Virtual Sensor Development
    • SAE International
    • [101] Nareid, H., Grimes, M., Verdejo, J., A Neural Network Based Methodology for Virtual Sensor Development. 2005, SAE International.
    • (2005)
    • Nareid, H.1    Grimes, M.2    Verdejo, J.3
  • 101
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • [102] Narendra, K.S., Parthasarathy, K., Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks, 1, 1990, 23.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 23
    • Narendra, K.S.1    Parthasarathy, K.2
  • 102
    • 0003808318 scopus 로고    scopus 로고
    • Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models
    • Springer Science & Business Media
    • [103] Nelles, O., Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. 2001, Springer Science & Business Media.
    • (2001)
    • Nelles, O.1
  • 103
    • 79952921157 scopus 로고    scopus 로고
    • Reduced-Order Modelling for Flow Control
    • Springer Science & Business Media
    • [104] Noack, B.R., Morzynski, M., Tadmor, G., Reduced-Order Modelling for Flow Control. 2011, Springer Science & Business Media.
    • (2011)
    • Noack, B.R.1    Morzynski, M.2    Tadmor, G.3
  • 104
    • 0020464111 scopus 로고
    • Simplified neuron model as a principal component analyzer
    • [105] Oja, E., Simplified neuron model as a principal component analyzer. J. Math. Biol. 15 (1982), 267–273.
    • (1982) J. Math. Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 105
    • 44849097066 scopus 로고    scopus 로고
    • Neural Network Based Fast-Running Engine Models for Control-Oriented Applications
    • SAE International
    • [106] Papadimitriou, I., Warner, M., Silvestri, J., Lennblad, J., Tabar, S., Neural Network Based Fast-Running Engine Models for Control-Oriented Applications. 2005, SAE International.
    • (2005)
    • Papadimitriou, I.1    Warner, M.2    Silvestri, J.3    Lennblad, J.4    Tabar, S.5
  • 106
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • [107] Park, J., Sandberg, I.W., Universal approximation using radial-basis-function networks. Neural Comput. 3 (1991), 246–257.
    • (1991) Neural Comput. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 107
    • 0033730243 scopus 로고    scopus 로고
    • Automotive vehicle control challenges in the 21st century
    • [108] Powers, W.F., Nicastri, P.R., Automotive vehicle control challenges in the 21st century. Control Eng. Pract. 8 (2000), 605–618.
    • (2000) Control Eng. Pract. , vol.8 , pp. 605-618
    • Powers, W.F.1    Nicastri, P.R.2
  • 108
    • 0028401031 scopus 로고
    • Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
    • [109] Puskorius, G.V., Feldkamp, L.A., Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Trans. Neural Networks 5 (1994), 279–297.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 279-297
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 109
    • 0002904487 scopus 로고    scopus 로고
    • Understanding Automotive Electronics: An Engineering Perspective
    • Butterworth-Heinemann
    • [110] Ribbens, W.B., Understanding Automotive Electronics: An Engineering Perspective. 2013, Butterworth-Heinemann.
    • (2013)
    • Ribbens, W.B.1
  • 110
    • 0028466750 scopus 로고
    • Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms
    • [111] Riedmiller, M., Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms. Comput. Stand. Interfaces 16 (1994), 265–278.
    • (1994) Comput. Stand. Interfaces , vol.16 , pp. 265-278
    • Riedmiller, M.1
  • 111
    • 33749000982 scopus 로고    scopus 로고
    • Design of Experiments (DoE) in Engine Development: Modern Development Methods to Meet New Challenges; with 30 Tables
    • Expert-Verlag
    • [112] Röpke, K., Design of Experiments (DoE) in Engine Development: Modern Development Methods to Meet New Challenges; with 30 Tables. 2009, Expert-Verlag.
    • (2009)
    • Röpke, K.1
  • 112
    • 0003465475 scopus 로고
    • Learning Internal Representations by Error Propagation
    • DTIC Document
    • [113] Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning Internal Representations by Error Propagation. 1985, DTIC Document.
    • (1985)
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 113
    • 77954594947 scopus 로고    scopus 로고
    • Modelling nonlinear vehicle dynamics with neural networks
    • [114] Rutherford, S.J., Cole, D.J., Modelling nonlinear vehicle dynamics with neural networks. Int. J. Veh. Des. 53 (2010), 260–287.
    • (2010) Int. J. Veh. Des. , vol.53 , pp. 260-287
    • Rutherford, S.J.1    Cole, D.J.2
  • 114
    • 77953213200 scopus 로고    scopus 로고
    • Accelerated Powertrain Development through Model Based Calibration
    • SAE International
    • [115] Schlosser, A., Kinoo, B., Salber, W., Werner, S., Ademes, N., Accelerated Powertrain Development through Model Based Calibration. 2006, SAE International.
    • (2006)
    • Schlosser, A.1    Kinoo, B.2    Salber, W.3    Werner, S.4    Ademes, N.5
  • 115
    • 85053963491 scopus 로고
    • Neural network learning algorithms
    • Springer
    • [116] Sejnowski, T.J., Neural network learning algorithms. Neural Comput., 1989 Springer.
    • (1989) Neural Comput.
    • Sejnowski, T.J.1
  • 116
    • 77955473867 scopus 로고    scopus 로고
    • Recent advances and future challenges for artificial neural systems in geotechnical engineering applications
    • [117] Shahin, M.A., Jaksa, M.B., Maier, H.R., Recent advances and future challenges for artificial neural systems in geotechnical engineering applications. Adv. Artif. Neural Syst., 2009, 2009, 5.
    • (2009) Adv. Artif. Neural Syst. , vol.2009 , pp. 5
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 117
    • 84939945182 scopus 로고    scopus 로고
    • A new approach in improvement of mean value models for spark ignition engines using neural networks
    • [118] Shamekhi, A.-M., Shamekhi, A.H., A new approach in improvement of mean value models for spark ignition engines using neural networks. Expert Syst. Appl. 42 (2015), 5192–5218.
    • (2015) Expert Syst. Appl. , vol.42 , pp. 5192-5218
    • Shamekhi, A.-M.1    Shamekhi, A.H.2
  • 118
    • 85017336187 scopus 로고    scopus 로고
    • Automatic Test-Case Generation for Hardware-in-the-Loop Testing of Automotive Body Control Modules
    • SAE International
    • [119] Shin, K.-W., Kim, S.S., Lim, D.-J., Automatic Test-Case Generation for Hardware-in-the-Loop Testing of Automotive Body Control Modules. 2013, SAE International.
    • (2013)
    • Shin, K.-W.1    Kim, S.S.2    Lim, D.-J.3
  • 120
    • 0026254768 scopus 로고
    • A general regression neural network
    • [121] Specht, D.F., A general regression neural network. IEEE Trans. Neural Networks 2 (1991), 568–576.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 121
    • 84871912237 scopus 로고    scopus 로고
    • Artificial Neural Networks-Industrial and Control Engineering Applications
    • Intech
    • [122] Suzuki, K., Artificial Neural Networks-Industrial and Control Engineering Applications. 2011, Intech.
    • (2011)
    • Suzuki, K.1
  • 122
    • 84983685079 scopus 로고    scopus 로고
    • Prediction of the temperature of the hole during the drilling process using artificial neural networks
    • [123] Tahavvor, A., Sepehrinia, S., Prediction of the temperature of the hole during the drilling process using artificial neural networks. IJST 38 (2014), 269–274.
    • (2014) IJST , vol.38 , pp. 269-274
    • Tahavvor, A.1    Sepehrinia, S.2
  • 123
    • 0003422880 scopus 로고    scopus 로고
    • Trading Up: Consumer and Environmental Regulation in a Global Economy
    • Harvard University Press
    • [125] Vogel, D., Trading Up: Consumer and Environmental Regulation in a Global Economy. 2009, Harvard University Press.
    • (2009)
    • Vogel, D.1
  • 124
    • 3843151278 scopus 로고
    • Occam's razor: a principle of intellectual elegance
    • [126] Walsh, D., Occam's razor: a principle of intellectual elegance. Am. Philos. Q., 1979, 241–244.
    • (1979) Am. Philos. Q. , pp. 241-244
    • Walsh, D.1
  • 125
    • 0038102804 scopus 로고    scopus 로고
    • Hybrid Air/Fuel Ratio Control using the Adaptive Estimation and Neural Network
    • SAE International
    • [127] Wendeker, M., Czarnigowski, J., Hybrid Air/Fuel Ratio Control using the Adaptive Estimation and Neural Network. 2000, SAE International.
    • (2000)
    • Wendeker, M.1    Czarnigowski, J.2
  • 126
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • [128] Werbos, P.J., Backpropagation through time: what it does and how to do it. Proc. IEEE 78 (1990), 1550–1560.
    • (1990) Proc. IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1
  • 127
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • [129] Williams, R.J., Zipser, D., A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1 (1989), 270–280.
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 128
    • 84863073354 scopus 로고    scopus 로고
    • Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 L VVT Engine
    • SAE International
    • [130] Wu, B., Filipi, Z., Assanis, D.N., Kramer, D.M., Ohl, G.L., Prucka, M.J., Divalentin, E., Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 L VVT Engine. 2004, SAE International.
    • (2004)
    • Wu, B.1    Filipi, Z.2    Assanis, D.N.3    Kramer, D.M.4    Ohl, G.L.5    Prucka, M.J.6    Divalentin, E.7
  • 129
    • 44849140074 scopus 로고    scopus 로고
    • Cam-Phasing Optimization Using Artificial Neural Networks as Surrogate Models-Maximizing Torque Output
    • SAE International
    • [131] Wu, B., Prucka, R.G., Filipi, Z., Kramer, D.M., Ohl, G.L., Cam-Phasing Optimization Using Artificial Neural Networks as Surrogate Models-Maximizing Torque Output. 2005, SAE International.
    • (2005)
    • Wu, B.1    Prucka, R.G.2    Filipi, Z.3    Kramer, D.M.4    Ohl, G.L.5
  • 130
    • 0036505995 scopus 로고    scopus 로고
    • Neural data fusion algorithms based on a linearly constrained least square method
    • [132] Xia, Y., Leung, H., Bossé, E., Neural data fusion algorithms based on a linearly constrained least square method. IEEE Trans. Neural Networks 13 (2002), 320–329.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 320-329
    • Xia, Y.1    Leung, H.2    Bossé, E.3
  • 131
    • 84982124898 scopus 로고    scopus 로고
    • Development of Dynamic Models for an HCCI Engine with Fully Variable Valve-Train
    • SAE International
    • [133] Yamasaki, Y., Schauer, F.X., Wachtmeister, G., Development of Dynamic Models for an HCCI Engine with Fully Variable Valve-Train. 2013, SAE International.
    • (2013)
    • Yamasaki, Y.1    Schauer, F.X.2    Wachtmeister, G.3
  • 132
    • 85017353415 scopus 로고    scopus 로고
    • Algorithm-In-The-Loop with Plant Model Simulation, Reusable Test Suite in Production Codes Verification and Controller Hardware-in-the-Loop Bench Testing
    • SAE International
    • [134] Yan, Q., Kao, M., Barrera, M., Algorithm-In-The-Loop with Plant Model Simulation, Reusable Test Suite in Production Codes Verification and Controller Hardware-in-the-Loop Bench Testing. 2010, SAE International.
    • (2010)
    • Yan, Q.1    Kao, M.2    Barrera, M.3
  • 133
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function neural networks
    • [135] Yingwei, L., Sundararajan, N., Saratchandran, P., A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput. 9 (1997), 461–478.
    • (1997) Neural Comput. , vol.9 , pp. 461-478
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 134
    • 0035273045 scopus 로고    scopus 로고
    • Some new results on system identification with dynamic neural networks
    • [136] Yu, W., Li, X., Some new results on system identification with dynamic neural networks. IEEE Trans. Neural Networks 12 (2001), 412–417.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 412-417
    • Yu, W.1    Li, X.2
  • 135
    • 58949103851 scopus 로고    scopus 로고
    • Neural network model-based automotive engine air/fuel ratio control and robustness evaluation
    • [137] Zhai, Y.-J., Yu, D.-L., Neural network model-based automotive engine air/fuel ratio control and robustness evaluation. Eng. Appl. Artif. Intell. 22 (2009), 171–180.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , pp. 171-180
    • Zhai, Y.-J.1    Yu, D.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.