-
1
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
Akaike, Hirotugu, 1973. Information theory and an extension of the maximum likelihood principle. Second International Symposium on Information Theory, pp. 267-281.
-
(1973)
Second International Symposium on Information Theory
, pp. 267-281
-
-
Akaike, H.1
-
2
-
-
0033105287
-
Model selection in neural networks
-
U. Anders, and O. Korn Model selection in neural networks Neural Netw. 12 2 1999 309 323
-
(1999)
Neural Netw.
, vol.12
, Issue.2
, pp. 309-323
-
-
Anders, U.1
Korn, O.2
-
3
-
-
0032970425
-
Nonlinear spatial normalization using basis functions
-
J. Ashburner, and K.J. Friston Nonlinear spatial normalization using basis functions Human Brain Map. 7 4 1999 254 266
-
(1999)
Human Brain Map.
, vol.7
, Issue.4
, pp. 254-266
-
-
Ashburner, J.1
Friston, K.J.2
-
4
-
-
0027659357
-
Curvature-driven smoothing a learning algorithm for feedforward networks
-
C.M. Bishop Curvature-driven smoothing a learning algorithm for feedforward networks IEEE Trans. Neural Netw. 4 5 1993 882 884
-
(1993)
IEEE Trans. Neural Netw.
, vol.4
, Issue.5
, pp. 882-884
-
-
Bishop, C.M.1
-
5
-
-
0030211964
-
Bagging predictors
-
L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
0030613470
-
Model selection an integral part of inference
-
S.T. Buckland, K.P. Burnham, and N.H. Augustin Model selection an integral part of inference Biometrics 53 2 1997 603 618
-
(1997)
Biometrics
, vol.53
, Issue.2
, pp. 603-618
-
-
Buckland, S.T.1
Burnham, K.P.2
Augustin, N.H.3
-
10
-
-
4944239996
-
The estimation of prediction error
-
B. Efron The estimation of prediction error J. Am. Stat. Assoc. 99 467 2004
-
(2004)
J. Am. Stat. Assoc.
, vol.99
, Issue.467
-
-
Efron, B.1
-
11
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
S. Geman, E. Bienenstock, and R. Doursat Neural networks and the bias/variance dilemma Neural Comput. 4 1 1992 1 58
-
(1992)
Neural Comput.
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
12
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones, and T. Poggio Regularization theory and neural networks architectures Neural Comput. 7 2 1995 219 269
-
(1995)
Neural Comput.
, vol.7
, Issue.2
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
13
-
-
84908101447
-
Dynamic NOx emission modelling using local model networks
-
C. Hametner, C. Mayr, and S. Jakubek Dynamic NOx emission modelling using local model networks Int. J. Engine Res. 15 8 2014 928 933 10.1177/1468087414523281
-
(2014)
Int. J. Engine Res.
, vol.15
, Issue.8
, pp. 928-933
-
-
Hametner, C.1
Mayr, C.2
Jakubek, S.3
-
14
-
-
34250303142
-
Least squares model averaging
-
B.E. Hansen Least squares model averaging Econometrica 75 4 2007 1175 1189
-
(2007)
Econometrica
, vol.75
, Issue.4
, pp. 1175-1189
-
-
Hansen, B.E.1
-
15
-
-
84948783167
-
The hat matrix in regression and ANOVA
-
D.C. Hoaglin, and R.E. Welsch The hat matrix in regression and ANOVA Am. Stat. 32 1 1978 17 22
-
(1978)
Am. Stat.
, vol.32
, Issue.1
, pp. 17-22
-
-
Hoaglin, D.C.1
Welsch, R.E.2
-
16
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White Multilayer feedforward networks are universal approximators Neural Netw. 2 5 1989 359 366
-
(1989)
Neural Netw.
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
17
-
-
67649452127
-
Identification of neurofuzzy models using GTLS parameter estimation
-
S. Jakubek, and C. Hametner Identification of neurofuzzy models using GTLS parameter estimation IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39 5 2009 1121 1133
-
(2009)
IEEE Trans. Syst. Man Cybern. Part B: Cybern.
, vol.39
, Issue.5
, pp. 1121-1133
-
-
Jakubek, S.1
Hametner, C.2
-
18
-
-
33747888908
-
A local neuro-fuzzy network for high-dimensional models and optimization
-
S. Jakubek, and N. Keuth A local neuro-fuzzy network for high-dimensional models and optimization Eng. Appl. Artif. Intel. 19 6 2006 705 717
-
(2006)
Eng. Appl. Artif. Intel.
, vol.19
, Issue.6
, pp. 705-717
-
-
Jakubek, S.1
Keuth, N.2
-
19
-
-
0001875599
-
Statistical analysis of empirical models fitted by optimization
-
D.A. Jones Statistical analysis of empirical models fitted by optimization Biometrika 70 1 1983 67 88
-
(1983)
Biometrika
, vol.70
, Issue.1
, pp. 67-88
-
-
Jones, D.A.1
-
20
-
-
33749143416
-
Bagged averaging of regression models
-
Springer, US
-
Kotsiantis, S.B.; Kanellopoulos, D.; Zaharakis, I.D.; 2006. Bagged averaging of regression models. In: Artificial Intelligence Applications and Innovations, Springer, US, pp. 53-60.
-
(2006)
Artificial Intelligence Applications and Innovations
, pp. 53-60
-
-
Kotsiantis S. ., B.1
Kanellopoulos, D.2
Zaharakis I. ., D.3
-
21
-
-
0001462696
-
Asymptotic optimality for Cp, CL, cross-validation and generalized cross-validation: Discrete index set
-
Li, K.C.; 1987. Asymptotic optimality for Cp, CL, cross-validation and generalized cross-validation: discrete index set. Ann. Stat. 958-975.
-
(1987)
Ann. Stat.
, pp. 958-975
-
-
Li, K.C.1
-
22
-
-
84915425007
-
Some comments on Cp
-
C.L. Mallows Some comments on Cp Technometrics 15 4 1973 661 675
-
(1973)
Technometrics
, vol.15
, Issue.4
, pp. 661-675
-
-
Mallows, C.L.1
-
24
-
-
0028544395
-
Network information criterion-determining the number of hidden units for an artificial neural network model
-
N. Murata, S. Yoshizawa, and S.I. Amari Network information criterion-determining the number of hidden units for an artificial neural network model IEEE Trans. Neural Netw. 5 6 1994 865 872
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, Issue.6
, pp. 865-872
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.I.3
-
26
-
-
0001349324
-
Asymptotic properties of criteria for selection of variables in multiple regression
-
R. Nishii Asymptotic properties of criteria for selection of variables in multiple regression Ann. Stat. 12 2 1984 758 765
-
(1984)
Ann. Stat.
, vol.12
, Issue.2
, pp. 758-765
-
-
Nishii, R.1
-
27
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz Estimating the dimension of a model Ann. Stat. 6 2 1978 461 464
-
(1978)
Ann. Stat.
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
28
-
-
77956887130
-
An optimal selection of regression variables
-
R. Shibata An optimal selection of regression variables Biometrika 68 1 1981 45 54
-
(1981)
Biometrika
, vol.68
, Issue.1
, pp. 45-54
-
-
Shibata, R.1
-
29
-
-
0001308646
-
Information criteria for selecting possibly misspecified parametric models
-
C.Y. Sin, and H. White Information criteria for selecting possibly misspecified parametric models J. Econom. 71 1 1996 207 225
-
(1996)
J. Econom.
, vol.71
, Issue.1
, pp. 207-225
-
-
Sin, C.Y.1
White, H.2
-
30
-
-
0000169918
-
Estimation of the mean of a multivariate normal distribution
-
Stein, C.M.; 1981. Estimation of the mean of a multivariate normal distribution. Ann. Stat.; 1135-1151.
-
(1981)
Ann. Stat.
, pp. 1135-1151
-
-
Stein, C.M.1
-
31
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone, M.; 1974. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B (Methodol.), 111-147.
-
(1974)
J. R. Stat. Soc. Ser. B (Methodol.)
, pp. 111-147
-
-
Stone, M.1
-
32
-
-
1042274728
-
Geometric surface processing via normal maps
-
T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher Geometric surface processing via normal maps ACM Trans. Graph. (TOG) 22 4 2003 1012 1033
-
(2003)
ACM Trans. Graph. (TOG)
, vol.22
, Issue.4
, pp. 1012-1033
-
-
Tasdizen, T.1
Whitaker, R.2
Burchard, P.3
Osher, S.4
-
33
-
-
77950210130
-
Accurate telemonitoring of Parkinsons disease progression by noninvasive speech tests
-
A. Tsanas, M.A. Little, P.E. McSharry, and L.O. Ramig Accurate telemonitoring of Parkinsons disease progression by noninvasive speech tests IEEE Trans. Biomed. Eng. 57 4 2010 884 893
-
(2010)
IEEE Trans. Biomed. Eng.
, vol.57
, Issue.4
, pp. 884-893
-
-
Tsanas, A.1
Little, M.A.2
McSharry, P.E.3
Ramig, L.O.4
-
34
-
-
84896905787
-
Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods
-
P. Tüfekci Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods Int. J. Electr. Power Energy Syst. 60 2014 126 140
-
(2014)
Int. J. Electr. Power Energy Syst.
, vol.60
, pp. 126-140
-
-
Tüfekci, P.1
-
35
-
-
0000243355
-
Learning in artificial neural networks a statistical perspective
-
H. White Learning in artificial neural networks a statistical perspective Neural Comput. 1 4 1989 425 464
-
(1989)
Neural Comput.
, vol.1
, Issue.4
, pp. 425-464
-
-
White, H.1
-
36
-
-
0032351389
-
On measuring and correcting the effects of data mining and model selection
-
J. Ye On measuring and correcting the effects of data mining and model selection J. Am. Stat. Assoc. 93 441 1998 120 131
-
(1998)
J. Am. Stat. Assoc.
, vol.93
, Issue.441
, pp. 120-131
-
-
Ye, J.1
-
37
-
-
0032295215
-
Modeling of strength of high-performance concrete using artificial neural networks
-
I.C. Yeh Modeling of strength of high-performance concrete using artificial neural networks Cement Concr. Res. 28 12 1998 1797 1808
-
(1998)
Cement Concr. Res.
, vol.28
, Issue.12
, pp. 1797-1808
-
-
Yeh, I.C.1
|