메뉴 건너뛰기




Volumn 2017, Issue , 2017, Pages

A Novel Multimode Fault Classification Method Based on Deep Learning

Author keywords

[No Author keywords available]

Indexed keywords

BEARINGS (MACHINE PARTS); DEEP LEARNING; DEEP NEURAL NETWORKS; MACHINERY; ROLLER BEARINGS;

EID: 85017191962     PISSN: 16875249     EISSN: 16875257     Source Type: Journal    
DOI: 10.1155/2017/3583610     Document Type: Article
Times cited : (54)

References (35)
  • 1
    • 84889003234 scopus 로고    scopus 로고
    • Review on fault diagnosis techniques for closed-loop systems
    • D.-H. Zhou, Y. Liu, and X. He, "Review on fault diagnosis techniques for closed-loop systems, " Acta Automatica Sinica, vol. 39, no. 11, pp. 1933-1943, 2013.
    • (2013) Acta Automatica Sinica , vol.39 , Issue.11 , pp. 1933-1943
    • Zhou, D.-H.1    Liu, Y.2    He, X.3
  • 2
    • 84979492203 scopus 로고    scopus 로고
    • Differential feature based hierarchical PCA fault detection method for dynamic fault
    • F. N. Zhou, J. H. Park, and Y. J. Liu, "Differential feature based hierarchical PCA fault detection method for dynamic fault, " Neurocomputing, vol. 202, pp. 27-35, 2016.
    • (2016) Neurocomputing , vol.202 , pp. 27-35
    • Zhou, F.N.1    Park, J.H.2    Liu, Y.J.3
  • 3
    • 84937818415 scopus 로고    scopus 로고
    • Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
    • C. Li, R.-V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E. Vásquez, "Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis, " Neurocomputing, vol. 168, pp. 119-127, 2015.
    • (2015) Neurocomputing , vol.168 , pp. 119-127
    • Li, C.1    Sanchez, R.-V.2    Zurita, G.3    Cerrada, M.4    Cabrera, D.5    Vásquez, R.E.6
  • 4
    • 84883000023 scopus 로고    scopus 로고
    • Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach
    • X. He, Z. Wang, Y. Liu, and D. H. Zhou, "Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach, " IEEE Transactions on Industrial Informatics, vol. 9, no. 3, pp. 1670-1679, 2013.
    • (2013) IEEE Transactions on Industrial Informatics , vol.9 , Issue.3 , pp. 1670-1679
    • He, X.1    Wang, Z.2    Liu, Y.3    Zhou, D.H.4
  • 5
    • 85031410456 scopus 로고    scopus 로고
    • Fault diagnosis andcompensation for two-dimensional discrete time systems with sensor faults and time-varying delays
    • D. Zhao, D. Shen, andY. Q. Wang, "Fault diagnosis andcompensation for two-dimensional discrete time systems with sensor faults and time-varying delays, " International Journal of Robust and Nonlinear Control, 2017.
    • (2017) International Journal of Robust and Nonlinear Control
    • Zhao, D.1    Shen, D.2    Wang, Y.Q.3
  • 6
    • 79952464875 scopus 로고    scopus 로고
    • Surver on data driven fault classification methods
    • H. Li and D. Y. Xiao, "Surver on data driven fault classification methods, " Control and Decision, vol. 26, no. 1, pp. 1-16, 2011.
    • (2011) Control and Decision , vol.26 , Issue.1 , pp. 1-16
    • Li, H.1    Xiao, D.Y.2
  • 7
    • 85017175518 scopus 로고    scopus 로고
    • Spacecraft fault classification based on hierarchical neural network
    • R. M. An and Y. Gao, "Spacecraft fault classification based on hierarchical neural network, " Spacecraft Environment Engineering, vol. 30, no. 2, pp. 203-208, 2013.
    • (2013) Spacecraft Environment Engineering , vol.30 , Issue.2 , pp. 203-208
    • An, R.M.1    Gao, Y.2
  • 9
    • 84958183629 scopus 로고    scopus 로고
    • On the use of reconstruction-based contribution for fault diagnosis
    • H. Ji, X. He, and D. Zhou, "On the use of reconstruction-based contribution for fault diagnosis, " Journal of Process Control, vol. 40, pp. 24-34, 2016.
    • (2016) Journal of Process Control , vol.40 , pp. 24-34
    • Ji, H.1    He, X.2    Zhou, D.3
  • 10
    • 33749859540 scopus 로고    scopus 로고
    • A fault classification approach for rotor systems based on empirical mode decompositionmethod and support vectormachines
    • D. J. Yu, M. F. Chen, J. S. Cheng, and Y. Yang, "A fault classification approach for rotor systems based on empirical mode decompositionmethod and support vectormachines, " Proceedings of the Chinese Society for Electrical Engineering, vol. 26, no. 16, pp. 162-167, 2006.
    • (2006) Proceedings of the Chinese Society for Electrical Engineering , vol.26 , Issue.16 , pp. 162-167
    • Yu, D.J.1    Chen, M.F.2    Cheng, J.S.3    Yang, Y.4
  • 11
    • 84955504842 scopus 로고    scopus 로고
    • Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
    • M. Gan, C. Wang, and C. A. Zhu, "Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings, " Mechanical Systems and Signal Processing, vol. 72-73, pp. 92-104, 2016.
    • (2016) Mechanical Systems and Signal Processing , vol.72-73 , pp. 92-104
    • Gan, M.1    Wang, C.2    Zhu, C.A.3
  • 12
    • 82255174981 scopus 로고    scopus 로고
    • Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network
    • G. F. Bin, J. J. Gao, X. J. Li, and B. S. Dhillon, "Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network, " Mechanical Systems and Signal Processing, vol. 27, no. 1, pp. 696-711, 2012.
    • (2012) Mechanical Systems and Signal Processing , vol.27 , Issue.1 , pp. 696-711
    • Bin, G.F.1    Gao, J.J.2    Li, X.J.3    Dhillon, B.S.4
  • 13
    • 34249661124 scopus 로고    scopus 로고
    • Support vectormachine inmachine condition monitoring and fault diagnosis
    • A. Widodo and B.-S. Yang, "Support vectormachine inmachine condition monitoring and fault diagnosis, " Mechanical Systems and Signal Processing, vol. 21, no. 6, pp. 2560-2574, 2007.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.6 , pp. 2560-2574
    • Widodo, A.1    Yang, B.-S.2
  • 14
    • 84930144738 scopus 로고    scopus 로고
    • Integrated state/disturbance observers for two-dimensional linear systems
    • D. Zhao, Z. Lin, and Y. Wang, "Integrated state/disturbance observers for two-dimensional linear systems, " IET Control Theory & Applications, vol. 9, no. 9, pp. 1373-1383, 2015.
    • (2015) IET Control Theory & Applications , vol.9 , Issue.9 , pp. 1373-1383
    • Zhao, D.1    Lin, Z.2    Wang, Y.3
  • 15
    • 33750503791 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
    • Q. Hu, Z. He, Z. Zhang, and Y. Zi, "Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble, "Mechanical Systems and Signal Processing, vol. 21, no. 2, pp. 688-705, 2007.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.2 , pp. 688-705
    • Hu, Q.1    He, Z.2    Zhang, Z.3    Zi, Y.4
  • 16
    • 77954191658 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis based on wavelet packet-neural network characteristic entropy
    • L. Y. Wang, W. G. Zhao, and Y. Liu, "Rolling bearing fault diagnosis based on wavelet packet-neural network characteristic entropy, " Advanced Materials Research, vol. 108-111, no. 1, pp. 1075-1079, 2010.
    • (2010) Advanced Materials Research , vol.108-111 , Issue.1 , pp. 1075-1079
    • Wang, L.Y.1    Zhao, W.G.2    Liu, Y.3
  • 19
    • 84899568094 scopus 로고    scopus 로고
    • Time series forecasting using a deep belief network with restricted Boltzmann machines
    • T. Kuremoto, S. Kimura, K. Kobayashi, and M. Obayashi, "Time series forecasting using a deep belief network with restricted Boltzmann machines, " Neurocomputing, vol. 137, pp. 47-56, 2014.
    • (2014) Neurocomputing , vol.137 , pp. 47-56
    • Kuremoto, T.1    Kimura, S.2    Kobayashi, K.3    Obayashi, M.4
  • 20
    • 84956983753 scopus 로고    scopus 로고
    • A fully automatic onine mode identiflcation method for multi-mode processes
    • S. M. Zhang, F. L. Wang, S. Tan, and S. Wang, "A fully automatic onine mode identiflcation method for multi-mode processes, " Acta Automatica Sinica, vol. 42, no. 1, pp. 60-80, 2016.
    • (2016) Acta Automatica Sinica , vol.42 , Issue.1 , pp. 60-80
    • Zhang, S.M.1    Wang, F.L.2    Tan, S.3    Wang, S.4
  • 21
    • 84910651844 scopus 로고    scopus 로고
    • Deep Learning in neural networks: An overview
    • J. Schmidhuber, "Deep Learning in neural networks: an overview, " Neural Networks, vol. 61, pp. 85-117, 2015.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 22
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 24
    • 84988527643 scopus 로고    scopus 로고
    • Key principal components with recursive local outlier factor for multimode chemical process monitoring
    • B. Song, S. Tan, and H. B. Shi, "Key principal components with recursive local outlier factor for multimode chemical process monitoring, " Journal of Process Control, vol. 47, pp. 136-149, 2016.
    • (2016) Journal of Process Control , vol.47 , pp. 136-149
    • Song, B.1    Tan, S.2    Shi, H.B.3
  • 25
    • 84907857669 scopus 로고    scopus 로고
    • Inter-batch-evolution-traced process monitoring based on inter-batch mode division for multiphase batch processes
    • L. Zhao, C. Zhao, and F. Gao, "Inter-batch-evolution-traced process monitoring based on inter-batch mode division for multiphase batch processes, " Chemometrics and Intelligent Laboratory Systems, vol. 138, pp. 178-192, 2014.
    • (2014) Chemometrics and Intelligent Laboratory Systems , vol.138 , pp. 178-192
    • Zhao, L.1    Zhao, C.2    Gao, F.3
  • 26
    • 84877622612 scopus 로고    scopus 로고
    • Modeling and monitoring of multimode process based on subspace separation
    • Y. Zhang, C. Wang, and R. Lu, "Modeling and monitoring of multimode process based on subspace separation, " Chemical Engineering Research andDesign, vol. 91, no. 5, pp. 831-842, 2013.
    • (2013) Chemical Engineering Research AndDesign , vol.91 , Issue.5 , pp. 831-842
    • Zhang, Y.1    Wang, C.2    Lu, R.3
  • 28
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • P. Tamilselvan and P. Wang, "Failure diagnosis using deep belief learning based health state classification, " Reliability Engineering & System Safety, vol. 115, pp. 124-135, 2013.
    • (2013) Reliability Engineering & System Safety , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 29
    • 85008600130 scopus 로고    scopus 로고
    • Adaptive deep supervised autoencoder based image reconstruction for face recognition
    • R. Huang, C. Liu, G. Li, and J. Zhou, "Adaptive deep supervised autoencoder based image reconstruction for face recognition, " Mathematical Problems in Engineering, vol. 2016, Article ID 6795352, 14 pages, 2016.
    • (2016) Mathematical Problems in Engineering , vol.2016
    • Huang, R.1    Liu, C.2    Li, G.3    Zhou, J.4
  • 30
    • 84988723839 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis based on STFT-deep learning and sound signals
    • H. Liu, L. Li, and J. Ma, "Rolling bearing fault diagnosis based on STFT-deep learning and sound signals, " Shock andVibration, vol. 2016, Article ID 6127479, 12 pages, 2016.
    • (2016) Shock AndVibration , vol.2016
    • Liu, H.1    Li, L.2    Ma, J.3
  • 31
    • 84930976790 scopus 로고    scopus 로고
    • Fault detection and self-learning identification based on PCA-PDBNs
    • P. L. Wang and C. J. Xia, "Fault detection and self-learning identification based on PCA-PDBNs, " Chinese Journal of Scientific Instrument, vol. 36, no. 5, pp. 1147-1154, 2015.
    • (2015) Chinese Journal of Scientific Instrument , vol.36 , Issue.5 , pp. 1147-1154
    • Wang, P.L.1    Xia, C.J.2
  • 32
    • 85017137609 scopus 로고    scopus 로고
    • Faults recognition of high-speed train bogie based on deep learning
    • R. Pang, Z. B. Yu, W. Y. Xiong, and H. Li, "Faults recognition of high-speed train bogie based on deep learning, " Journal of Railway Science and Engineering, vol. 12, no. 6, pp. 1283-1288, 2015.
    • (2015) Journal of Railway Science and Engineering , vol.12 , Issue.6 , pp. 1283-1288
    • Pang, R.1    Yu, Z.B.2    Xiong, W.Y.3    Li, H.4
  • 33
    • 84982792319 scopus 로고    scopus 로고
    • Faultdiagnosis of rotary machinery components using a stacked denoising autoencoderbased health state identification
    • C. Lu, Z. Y. Wang, W. L. Qin, and J. Ma, "Faultdiagnosis of rotary machinery components using a stacked denoising autoencoderbased health state identification, " Signal Processing, vol. 130, pp. 377-388, 2017.
    • (2017) Signal Processing , vol.130 , pp. 377-388
    • Lu, C.1    Wang, Z.Y.2    Qin, W.L.3    Ma, J.4
  • 34
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotatingmachinery withmassive data
    • F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, "Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotatingmachinery withmassive data, " Mechanical Systems and Signal Processing, vol. 72-73, pp. 303-315, 2016.
    • (2016) Mechanical Systems and Signal Processing , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.