메뉴 건너뛰기




Volumn 92, Issue , 2017, Pages 60-68

Evaluating deep learning architectures for Speech Emotion Recognition

Author keywords

Affective computing; Deep learning; Emotion recognition; Neural networks; Speech recognition

Indexed keywords

DEEP LEARNING; DEEP NEURAL NETWORKS; NETWORK ARCHITECTURE; NEURAL NETWORKS; RECURRENT NEURAL NETWORKS; SPEECH PROCESSING;

EID: 85017190163     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2017.02.013     Document Type: Article
Times cited : (506)

References (49)
  • 2
    • 84906250865 scopus 로고    scopus 로고
    • Energy and F0 contour modeling with functional data analysis for emotional speech detection
    • Arias, J.P., Busso, C., Yoma, N.B., Energy and F0 contour modeling with functional data analysis for emotional speech detection. Interspeech, 2013, 2871–2875.
    • (2013) Interspeech , pp. 2871-2875
    • Arias, J.P.1    Busso, C.2    Yoma, N.B.3
  • 3
    • 78649328053 scopus 로고    scopus 로고
    • Survey on speech emotion recognition: Features, classification schemes, and databases
    • Ayadi, M.E., Kamel, M.S., Karray, F., Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognition 44 (2011), 572–587.
    • (2011) Pattern Recognition , vol.44 , pp. 572-587
    • Ayadi, M.E.1    Kamel, M.S.2    Karray, F.3
  • 10
    • 85007168680 scopus 로고    scopus 로고
    • Modeling subjectiveness in emotion recognition with deep neural networks: Ensembles vs soft labels
    • Fayek, H.M., Lech, M., Cavedon, L., Modeling subjectiveness in emotion recognition with deep neural networks: Ensembles vs soft labels. 2016 international joint conference on neural networks (IJCNN), 2016, 566–570, 10.1109/IJCNN.2016.7727250.
    • (2016) 2016 international joint conference on neural networks (IJCNN) , pp. 566-570
    • Fayek, H.M.1    Lech, M.2    Cavedon, L.3
  • 11
    • 84994259687 scopus 로고    scopus 로고
    • On the correlation and transferability of features between automatic speech recognition and speech emotion recognition
    • Fayek, H.M., Lech, M., Cavedon, L., On the correlation and transferability of features between automatic speech recognition and speech emotion recognition. Interspeech 2016, 2016, 3618–3622, 10.21437/Interspeech.2016-868.
    • (2016) Interspeech 2016 , pp. 3618-3622
    • Fayek, H.M.1    Lech, M.2    Cavedon, L.3
  • 12
    • 8644229278 scopus 로고    scopus 로고
    • A computational model for the automatic recognition of affect in speech
    • (Ph.D. thesis) School of Architecture and Planning, Massachusetts Institute of Technology
    • Fernandez, R., A computational model for the automatic recognition of affect in speech. (Ph.D. thesis), 2004, School of Architecture and Planning, Massachusetts Institute of Technology.
    • (2004)
    • Fernandez, R.1
  • 13
    • 84862294866 scopus 로고    scopus 로고
    • In JMLR W&CP: Proceedings of the fourteenth international conference on artificial intelligence and statistics, AISTATS 2011.
    • Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In JMLR W&CP: Proceedings of the fourteenth international conference on artificial intelligence and statistics, AISTATS 2011.
    • (2011) Deep sparse rectifier neural networks.
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 15
    • 70349284484 scopus 로고    scopus 로고
    • Supervised sequence labelling with recurrent neural networks
    • (Ph.D. thesis) Technische Universitat Munchen
    • Graves, A., Supervised sequence labelling with recurrent neural networks. (Ph.D. thesis), 2008, Technische Universitat Munchen.
    • (2008)
    • Graves, A.1
  • 17
    • 84910060363 scopus 로고    scopus 로고
    • Speech emotion recognition using deep neural network and extreme learning machine
    • Han, K., Yu, D., Tashev, I., Speech emotion recognition using deep neural network and extreme learning machine. Interspeech 2014, 2014.
    • (2014) Interspeech 2014
    • Han, K.1    Yu, D.2    Tashev, I.3
  • 19
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.-R., Jaitly, N., et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine 29 (2012), 82–97, 10.1109/MSP.2012.2205597.
    • (2012) IEEE Signal Processing Magazine , vol.29 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3    Dahl, G.E.4    Mohamed, A.-R.5    Jaitly, N.6
  • 20
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Hochreiter, S., Schmidhuber, J., Long short-term memory. Neural Computation 9 (1997), 1735–1780, 10.1162/neco.1997.9.8.1735.
    • (1997) Neural Computation , vol.9 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 24
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Insight
    • LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444 Insight.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 26
    • 79960847182 scopus 로고    scopus 로고
    • Emotion recognition using a hierarchical binary decision tree approach
    • Lee, C.-C., Mower, E., Busso, C., Lee, S., Narayanan, S., Emotion recognition using a hierarchical binary decision tree approach. Speech Communication 53 (2011), 1162–1171.
    • (2011) Speech Communication , vol.53 , pp. 1162-1171
    • Lee, C.-C.1    Mower, E.2    Busso, C.3    Lee, S.4    Narayanan, S.5
  • 28
    • 84913548678 scopus 로고    scopus 로고
    • Learning salient features for speech emotion recognition using convolutional neural networks
    • Mao, Q., Dong, M., Huang, Z., Zhan, Y., Learning salient features for speech emotion recognition using convolutional neural networks. IEEE Transactions on Multimedia 16 (2014), 2203–2213.
    • (2014) IEEE Transactions on Multimedia , vol.16 , pp. 2203-2213
    • Mao, Q.1    Dong, M.2    Huang, Z.3    Zhan, Y.4
  • 29
    • 84880519188 scopus 로고    scopus 로고
    • Exploring cross-modality affective reactions for audiovisual emotion recognition
    • Mariooryad, S., Busso, C., Exploring cross-modality affective reactions for audiovisual emotion recognition. IEEE Transactions on Affective Computing 4 (2013), 183–196, 10.1109/T-AFFC.2013.11.
    • (2013) IEEE Transactions on Affective Computing , vol.4 , pp. 183-196
    • Mariooryad, S.1    Busso, C.2
  • 34
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors. Nature 323 (1986), 533–536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 35
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J., Deep learning in neural networks: An overview. Neural Networks 61 (2015), 85–117, 10.1016/j.neunet.2014.09.003.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 40
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition. In International conference on learning representations (ICLR).
    • Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In International conference on learning representations (ICLR).
    • (2015)
    • Simonyan, K.1    Zisserman, A.2
  • 45
    • 84964039845 scopus 로고    scopus 로고
    • In 2015 International conference on affective computing and intelligent interaction (ACII) (pp. ).
    • Tian, L., Moore, J., & Lai, C. (2015). Emotion recognition in spontaneous and acted dialogues. In 2015 International conference on affective computing and intelligent interaction (ACII) (pp. 698–704).
    • (2015) Emotion recognition in spontaneous and acted dialogues. , pp. 698-704
    • Tian, L.1    Moore, J.2    Lai, C.3
  • 46
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • Tieleman, T., Hinton, G., Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.
    • (2012) COURSERA: Neural Networks for Machine Learning , vol.4
    • Tieleman, T.1    Hinton, G.2
  • 47
    • 33746410556 scopus 로고    scopus 로고
    • Emotional speech recognition: Resources, features, and methods
    • Ververidis, D., Kotropoulos, C., Emotional speech recognition: Resources, features, and methods. Speech Communication 48 (2006), 1162–1181.
    • (2006) Speech Communication , vol.48 , pp. 1162-1181
    • Ververidis, D.1    Kotropoulos, C.2
  • 49
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • Werbos, P.J., Generalization of backpropagation with application to a recurrent gas market model. Neural Networks 1 (1988), 339–356, 10.1016/0893-6080(88)90007-X.
    • (1988) Neural Networks , vol.1 , pp. 339-356
    • Werbos, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.