-
1
-
-
84883642231
-
Oncolytic viruses as therapeutic cancer vaccines
-
Bartlett, D. L., et al. Oncolytic viruses as therapeutic cancer vaccines. Mol. Cancer 12, 103 (2013).
-
(2013)
Mol. Cancer
, vol.12
, pp. 103
-
-
Bartlett, D.L.1
-
2
-
-
84904999549
-
Going viral with cancer immunotherapy
-
Lichty, B. D., Breitbach, C. J., Stojdl, D. F., Bell, J. C. Going viral with cancer immunotherapy. Nat. Rev. Cancer 14, 559-567 (2014).
-
(2014)
Nat. Rev. Cancer
, vol.14
, pp. 559-567
-
-
Lichty, B.D.1
Breitbach, C.J.2
Stojdl, D.F.3
Bell, J.C.4
-
3
-
-
84933586864
-
Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma
-
Andtbacka, R. H., et al. Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J. clin. oncol. 33, 2780-2788 (2015).
-
(2015)
J. Clin. Oncol.
, vol.33
, pp. 2780-2788
-
-
Andtbacka, R.H.1
-
4
-
-
84255197842
-
Cancer immunotherapy comes of age
-
Mellman, I., Coukos, G., Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480-489 (2011).
-
(2011)
Nature
, vol.480
, pp. 480-489
-
-
Mellman, I.1
Coukos, G.2
Dranoff, G.3
-
5
-
-
84860188105
-
Therapeutic cancer vaccines: Current status and moving forward
-
Schlom, J. Therapeutic cancer vaccines: current status and moving forward. J. Natl. Cancer Inst. 104, 599-613 (2012).
-
(2012)
J. Natl. Cancer Inst.
, vol.104
, pp. 599-613
-
-
Schlom, J.1
-
6
-
-
84858758766
-
Adoptive immunotherapy for cancer: Harnessing the T cell response
-
Restifo, N. P., Dudley, M. E., Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. rev. Immunol. 12, 269-281 (2012).
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 269-281
-
-
Restifo, N.P.1
Dudley, M.E.2
Rosenberg, S.A.3
-
7
-
-
84893562519
-
Chimeric antigen receptor therapy for cancer
-
Barrett, D. M., Singh, N., Porter, D. L., Grupp, S. A., June, C. H. Chimeric antigen receptor therapy for cancer. Annu. rev. med. 65, 333-347 (2014).
-
(2014)
Annu. Rev. Med.
, vol.65
, pp. 333-347
-
-
Barrett, D.M.1
Singh, N.2
Porter, D.L.3
Grupp, S.A.4
June, C.H.5
-
8
-
-
84963621254
-
Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy
-
Topalian, S. L., Taube, J. M., Anders, R. A., Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. rev. Cancer 16, 275-287 (2016).
-
(2016)
Nat. Rev. Cancer
, vol.16
, pp. 275-287
-
-
Topalian, S.L.1
Taube, J.M.2
Anders, R.A.3
Pardoll, D.M.4
-
9
-
-
84937846973
-
Evolving synergistic combinations of targeted immunotherapies to combat cancer
-
Melero, I., et al. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. rev. Cancer 15, 457-472 (2015).
-
(2015)
Nat. Rev. Cancer
, vol.15
, pp. 457-472
-
-
Melero, I.1
-
10
-
-
84940824279
-
Oncolytic viruses: A new class of immunotherapy drugs
-
Kaufman, H. L., Kohlhapp, F. J., Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642-662 (2015).
-
(2015)
Nat. Rev. Drug Discov.
, vol.14
, pp. 642-662
-
-
Kaufman, H.L.1
Kohlhapp, F.J.2
Zloza, A.3
-
11
-
-
57749201655
-
Targeted and armed oncolytic poxviruses: A novel multi-mechanistic therapeutic class for cancer
-
Kirn, D. H., Thorne, S. H. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat. rev. Cancer 9, 64-71 (2009).
-
(2009)
Nat. Rev. Cancer
, vol.9
, pp. 64-71
-
-
Kirn, D.H.1
Thorne, S.H.2
-
12
-
-
22144457398
-
Targeting the local tumor microenvironment with vaccinia virus expressing B7. 1 for the treatment of melanoma
-
Kaufman, H. L., et al. Targeting the local tumor microenvironment with vaccinia virus expressing B7. 1 for the treatment of melanoma. J. clin. invest. 115, 1903-1912 (2005).
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1903-1912
-
-
Kaufman, H.L.1
-
13
-
-
84944454261
-
New role of interleukin-10 in enhancing the antitumor efficacy of oncolytic vaccinia virus for treatment of pancreatic cancer
-
Chard, L. S., Lemoine, N. R., Wang, Y. New role of interleukin-10 in enhancing the antitumor efficacy of oncolytic vaccinia virus for treatment of pancreatic cancer. Oncoimmunology 4, e1038689 (2015).
-
(2015)
Oncoimmunology
, vol.4
, pp. e1038689
-
-
Chard, L.S.1
Lemoine, N.R.2
Wang, Y.3
-
14
-
-
84961675423
-
CXCL11-armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy
-
Liu, Z., et al. CXCL11-armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy. Oncoimmunology 5, e1091554 (2016).
-
(2016)
Oncoimmunology
, vol.5
, pp. e1091554
-
-
Liu, Z.1
-
15
-
-
84875225339
-
Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer
-
Heo, J., et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat. med. 19, 329-336 (2013).
-
(2013)
Nat. Med.
, vol.19
, pp. 329-336
-
-
Heo, J.1
-
16
-
-
84920669908
-
First-in-man study of western reserve strain oncolytic vaccinia virus: Safety, systemic spread, antitumor activity
-
Zeh, H. J., et al. First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, antitumor activity. Mol. Ther. 23, 202-214 (2015).
-
(2015)
Mol. Ther.
, vol.23
, pp. 202-214
-
-
Zeh, H.J.1
-
17
-
-
84978028200
-
Phase 1 study of intravenous oncolytic poxvirus (vvDD) in patients with advanced solid cancers
-
Downs-Canner, S., et al. Phase 1 study of intravenous oncolytic poxvirus (vvDD) in patients with advanced solid cancers. Mol. Ther. 24, 1492-1501 (2016).
-
(2016)
Mol. Ther.
, vol.24
, pp. 1492-1501
-
-
Downs-Canner, S.1
-
18
-
-
84965079389
-
Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer
-
Francis, L., et al. Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer. Oncotarget 7, 22174-22185 (2016).
-
(2016)
Oncotarget
, vol.7
, pp. 22174-22185
-
-
Francis, L.1
-
19
-
-
18544380239
-
Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion
-
Dong, H., et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. med. 8, 793-800 (2002).
-
(2002)
Nat. Med.
, vol.8
, pp. 793-800
-
-
Dong, H.1
-
20
-
-
0034596948
-
Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation
-
Freeman, G. J., et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027-1034 (2000).
-
(2000)
J. Exp. Med.
, vol.192
, pp. 1027-1034
-
-
Freeman, G.J.1
-
21
-
-
32544459770
-
Restoring function in exhausted CD8 T cells during chronic viral infection
-
Barber, D. L., et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682-687 (2006).
-
(2006)
Nature
, vol.439
, pp. 682-687
-
-
Barber, D.L.1
-
22
-
-
34548050436
-
CD8 T cell dysfunction during chronic viral infection
-
Shin, H., Wherry, E. J. CD8 T cell dysfunction during chronic viral infection. Curr. opin. immunol. 19, 408-415 (2007).
-
(2007)
Curr. Opin. Immunol.
, vol.19
, pp. 408-415
-
-
Shin, H.1
Wherry, E.J.2
-
23
-
-
84928062583
-
Immune checkpoint blockade: A common denominator approach to cancer therapy
-
Topalian, S. L., Drake, C. G., Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450-461 (2015).
-
(2015)
Cancer Cell
, vol.27
, pp. 450-461
-
-
Topalian, S.L.1
Drake, C.G.2
Pardoll, D.M.3
-
24
-
-
33748098860
-
PD-L1 is induced in hepatocytes by viral infection and by interferon-alpha and-gamma and mediates T cell apoptosis
-
Muhlbauer, M., et al. PD-L1 is induced in hepatocytes by viral infection and by interferon-alpha and-gamma and mediates T cell apoptosis. J. Hepatol. 45, 520-528 (2006).
-
(2006)
J. Hepatol.
, vol.45
, pp. 520-528
-
-
Muhlbauer, M.1
-
25
-
-
84858206832
-
Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: Implications for targeted therapy
-
Green, M. R., et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin. Cancer Res. 18, 1611-1618 (2012).
-
(2012)
Clin. Cancer Res.
, vol.18
, pp. 1611-1618
-
-
Green, M.R.1
-
26
-
-
84875696452
-
Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression
-
Lu, W., et al. Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression. Oncol. Lett. 5, 1519-1526 (2013).
-
(2013)
Oncol. Lett.
, vol.5
, pp. 1519-1526
-
-
Lu, W.1
-
27
-
-
84928773222
-
IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer
-
Abiko, K., et al. IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br. J. Cancer 112, 1501-1509 (2015).
-
(2015)
Br. J. Cancer
, vol.112
, pp. 1501-1509
-
-
Abiko, K.1
-
28
-
-
84941711371
-
Anti-PD-1/PD-L1 therapy of human cancer: Past, present, future
-
Chen, L., Han, X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, future. J. clin. invest. 125, 3384-3391 (2015).
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 3384-3391
-
-
Chen, L.1
Han, X.2
-
29
-
-
84864810354
-
NK cell response to vaccinia virus is regulated by myeloid-derived suppressor cells
-
Fortin, C., Huang, X., Yang, Y. NK cell response to vaccinia virus is regulated by myeloid-derived suppressor cells. J. Immunol. 189, 1843-1849 (2012).
-
(2012)
J. Immunol.
, vol.189
, pp. 1843-1849
-
-
Fortin, C.1
Huang, X.2
Yang, Y.3
-
30
-
-
84989844879
-
T-cell exhaustion in the tumor microenvironment
-
Jiang, Y., Li, Y., Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 6, e1792 (2015).
-
(2015)
Cell Death Dis.
, vol.6
, pp. e1792
-
-
Jiang, Y.1
Li, Y.2
Zhu, B.3
-
31
-
-
84982144414
-
Regulatory circuits of T cell function in cancer
-
Speiser, D. E., Ho, P. C., Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. rev. Immunol. 16, 599-611 (2016).
-
(2016)
Nat. Rev. Immunol.
, vol.16
, pp. 599-611
-
-
Speiser, D.E.1
Ho, P.C.2
Verdeil, G.3
-
32
-
-
84862903106
-
Safety and activity of anti-PD-L1 antibody in patients with advanced cancer
-
Brahmer, J. R., et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. j. med. 366, 2455-2465 (2012).
-
(2012)
N. Engl. J. Med.
, vol.366
, pp. 2455-2465
-
-
Brahmer, J.R.1
-
33
-
-
84920956735
-
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients
-
Herbst, R. S., et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563-567 (2014).
-
(2014)
Nature
, vol.515
, pp. 563-567
-
-
Herbst, R.S.1
-
34
-
-
84867397020
-
Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4
-
Dias, J. D., et al. Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Ther. 19, 988-998 (2012).
-
(2012)
Gene Ther.
, vol.19
, pp. 988-998
-
-
Dias, J.D.1
-
35
-
-
84964314651
-
CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy
-
Engeland, C. E., et al. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol. Ther. 22, 1949-1959;2014
-
(2014)
Mol. Ther.
, vol.22
, pp. 1949-1959
-
-
Engeland, C.E.1
-
36
-
-
84897476768
-
Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy
-
Zamarin, D., et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. transl. med. 6, 226ra232 (2014).
-
(2014)
Sci. Transl. Med.
, vol.6
, pp. 226ra232
-
-
Zamarin, D.1
-
37
-
-
84962219179
-
Virotherapy with a Semliki Forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade
-
Quetglas, J. I., et al. Virotherapy with a Semliki Forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol. Res. 3, 449-454 (2015).
-
(2015)
Cancer Immunol. Res.
, vol.3
, pp. 449-454
-
-
Quetglas, J.I.1
-
38
-
-
84957845897
-
Combination therapy with reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses
-
Rajani, K., et al. Combination therapy with reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol. Ther. 24, 166-174 (2016).
-
(2016)
Mol. Ther.
, vol.24
, pp. 166-174
-
-
Rajani, K.1
-
39
-
-
84943582368
-
Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses
-
Woller, N., et al. Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol. Ther. 23, 1630-1640 (2015).
-
(2015)
Mol. Ther.
, vol.23
, pp. 1630-1640
-
-
Woller, N.1
-
40
-
-
84899753178
-
PD-L1 is a novel direct target of HIF-1alpha, its blockade under hypoxia enhanced MDSC-mediated T cell activation
-
Noman, M. Z., et al. PD-L1 is a novel direct target of HIF-1alpha, its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781-790 (2014).
-
(2014)
J. Exp. Med.
, vol.211
, pp. 781-790
-
-
Noman, M.Z.1
-
41
-
-
34247157223
-
The new B7s: Playing a pivotal role in tumor immunity
-
Flies, D. B., Chen, L. The new B7s: playing a pivotal role in tumor immunity. J. Immunother. 30, 251-260 (2007).
-
(2007)
J. Immunother.
, vol.30
, pp. 251-260
-
-
Flies, D.B.1
Chen, L.2
-
42
-
-
42649125225
-
PD-1 and its ligands in tolerance and immunity
-
Keir, M. E., Butte, M. J., Freeman, G. J., Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677-704 (2008).
-
(2008)
Annu. Rev. Immunol.
, vol.26
, pp. 677-704
-
-
Keir, M.E.1
Butte, M.J.2
Freeman, G.J.3
Sharpe, A.H.4
-
43
-
-
84901044424
-
Oncolytic immunotherapy: Dying the right way is a key to eliciting potent antitumor immunity
-
Guo, Z. S., Liu, Z., Bartlett, D. L. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front. oncol. 4, 74 (2014).
-
(2014)
Front. Oncol.
, vol.4
, pp. 74
-
-
Guo, Z.S.1
Liu, Z.2
Bartlett, D.L.3
-
44
-
-
84874309252
-
Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans
-
Breitbach, C. J., et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer res. 73, 1265-1275 (2013).
-
(2013)
Cancer Res.
, vol.73
, pp. 1265-1275
-
-
Breitbach, C.J.1
-
45
-
-
84941367700
-
Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth
-
Kleffel, S., et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell 162, 1242-1256 (2015).
-
(2015)
Cell
, vol.162
, pp. 1242-1256
-
-
Kleffel, S.1
-
46
-
-
67449110979
-
Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1
-
Kuang, D. M., et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 206, 1327-1337 (2009).
-
(2009)
J. Exp. Med.
, vol.206
, pp. 1327-1337
-
-
Kuang, D.M.1
-
47
-
-
38349079989
-
Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene
-
Chalikonda, S., et al. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Ther. 15, 115-125 (2008).
-
(2008)
Cancer Gene Ther.
, vol.15
, pp. 115-125
-
-
Chalikonda, S.1
-
48
-
-
79956276321
-
Homeobox gene Rhox5 is regulated by epigenetic mechanisms in cancer and stem cells and promotes cancer growth
-
Li, Q., O'Malley, M. E., Bartlett, D. L., Guo, Z. S. Homeobox gene Rhox5 is regulated by epigenetic mechanisms in cancer and stem cells and promotes cancer growth. Mol. cancer 10, 63 (2011).
-
(2011)
Mol. Cancer
, vol.10
, pp. 63
-
-
Li, Q.1
O'Malley, M.E.2
Bartlett, D.L.3
Guo, Z.S.4
|