메뉴 건너뛰기




Volumn 29, Issue 5, 2018, Pages 1652-1661

Recurrent neural networks with auxiliary memory units

Author keywords

Learning algorithms; Memory; Recurrent neural networks (RNNs); Sequence learning

Indexed keywords

ERRORS; LEARNING SYSTEMS; NEURAL NETWORKS; NEURONS; RECURRENT NEURAL NETWORKS; SOFTWARE PROTOTYPING;

EID: 85016125010     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2017.2677968     Document Type: Article
Times cited : (51)

References (25)
  • 2
    • 0034069365 scopus 로고    scopus 로고
    • On the approximation capability of recurrent neural networks
    • B. Hammer, "On the approximation capability of recurrent neural networks, " Neurocomputing, vol. 31, no. 1-4, pp. 107-123, 2000.
    • (2000) Neurocomputing , vol.31 , Issue.1-4 , pp. 107-123
    • Hammer, B.1
  • 3
    • 2442432590 scopus 로고    scopus 로고
    • Multistability of discrete-time recurrent neural networks with unsaturating piecewise linear activation functions
    • Mar
    • Z. Yi and K. K. Tan, "Multistability of discrete-time recurrent neural networks with unsaturating piecewise linear activation functions, " IEEE Trans. Neural Netw., vol. 15, no. 2, pp. 329-336, Mar. 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.2 , pp. 329-336
    • Yi, Z.1    Tan, K.K.2
  • 4
    • 67649583798 scopus 로고    scopus 로고
    • Activity invariant sets and exponentially stable attractors of linear threshold discrete-time recurrent neural networks
    • Jun
    • L. Zhang, Z. Yi, S. L. Zhang, and P. A. Heng, "Activity invariant sets and exponentially stable attractors of linear threshold discrete-time recurrent neural networks, " IEEE Trans. Autom. Control, vol. 54, no. 6, pp. 1341-1347, Jun. 2009.
    • (2009) IEEE Trans. Autom. Control , vol.54 , Issue.6 , pp. 1341-1347
    • Zhang, L.1    Yi, Z.2    Zhang, S.L.3    Heng, P.A.4
  • 5
    • 28444431612 scopus 로고    scopus 로고
    • Global convergence of lotka-volterra recurrent neural networks with delays
    • Nov
    • Z. Yi and K. K. Tan, "Global convergence of Lotka-Volterra recurrent neural networks with delays, " IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 11, pp. 2482-2489, Nov. 2005.
    • (2005) IEEE Trans. Circuits Syst. I, Reg. Papers , vol.52 , Issue.11 , pp. 2482-2489
    • Yi, Z.1    Tan, K.K.2
  • 6
    • 77649270351 scopus 로고    scopus 로고
    • Foundations of implementing the competitive layer model by lotka-volterra recurrent neural networks
    • Mar
    • Z. Yi, "Foundations of implementing the competitive layer model by Lotka-Volterra recurrent neural networks, " IEEE Trans. Neural Netw., vol. 21, no. 3, pp. 494-507, Mar. 2010.
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.3 , pp. 494-507
    • Yi, Z.1
  • 7
    • 26444565569 scopus 로고
    • Finding structure in time
    • Mar
    • J. L. Elman, "Finding structure in time, " Cognit. Sci., vol. 14, no. 2, pp. 179-211, Mar. 1990.
    • (1990) Cognit. Sci. , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 8
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory, " Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
    • (1997) Neural Comput , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 13
    • 84959236502 scopus 로고    scopus 로고
    • Long-term recurrent convolutional networks for visual recognition and description
    • Jun
    • J. Donahue et al., "Long-term recurrent convolutional networks for visual recognition and description, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 2625-2634.
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recognit , pp. 2625-2634
    • Donahue, J.1
  • 15
    • 84946763507 scopus 로고    scopus 로고
    • Describing multimedia content using attention-based encoder-decoder networks
    • Nov
    • K. Cho, A. Courville, and Y. Bengio, "Describing multimedia content using attention-based encoder-decoder networks, " IEEE Trans. Multimedia, vol. 17, no. 11, pp. 1875-1886, Nov. 2015.
    • (2015) IEEE Trans. Multimedia , vol.17 , Issue.11 , pp. 1875-1886
    • Cho, K.1    Courville, A.2    Bengio, Y.3
  • 16
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Mar
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult, " IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 17
    • 84892982833 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • R. Pascanu, T. Mikolov, and Y. Bengio, "On the difficulty of training recurrent neural networks, " in Proc. ICML, vol. 28. 2013, pp. 1310-1318.
    • (2013) Proc. ICML , vol.28 , pp. 1310-1318
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 18
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual prediction with LSTM, " Neural Comput., vol. 12, no. 10, pp. 2451-2471, 2000.
    • (2000) Neural Comput , vol.12 , Issue.10 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 20
    • 0001765578 scopus 로고
    • Gradient-based learning algorithms for recurrent networks and their computational complexity
    • Hillsdale, NJ, USA: Lawrence Erlbaum Associates
    • R. J. Williams and D. Zipser, "Gradient-based learning algorithms for recurrent networks and their computational complexity, " in Backpropagation: Theory, Architectures, and Applications, vol. 1. Hillsdale, NJ, USA: Lawrence Erlbaum Associates, 1995, pp. 433-486.
    • (1995) Backpropagation: Theory, Architectures, and Applications , vol.1 , pp. 433-486
    • Williams, R.J.1    Zipser, D.2
  • 21
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks, " Neural Comput., vol. 1, no. 2, pp. 270-280, 1989.
    • (1989) Neural Comput , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 22
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Oct
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors, " Nature, vol. 323, pp. 533-536, Oct. 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 23
    • 80053451847 scopus 로고    scopus 로고
    • Learning recurrent neural networks with hessian-free optimization
    • J. Martens and I. Sutskever, "Learning recurrent neural networks with hessian-free optimization, " in Proc. 28th Int. Conf. Mach. Learn. (ICML), 2011, pp. 1033-1040.
    • (2011) Proc. 28th Int. Conf. Mach. Learn. (ICML) , pp. 1033-1040
    • Martens, J.1    Sutskever, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.