메뉴 건너뛰기




Volumn 7, Issue , 2017, Pages

Engineering a lipase B from Candida antactica with efficient perhydrolysis performance by eliminating its hydrolase activity

Author keywords

[No Author keywords available]

Indexed keywords

HYDROLASE; SOLVENT; TRIACYLGLYCEROL LIPASE;

EID: 85016084909     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep44599     Document Type: Article
Times cited : (19)

References (22)
  • 1
    • 0032818397 scopus 로고    scopus 로고
    • 100 Years of Baeyer-Villiger oxidations
    • Renz, M. & Meunier, B. 100 Years of Baeyer-Villiger oxidations. European J. Org. Chem. 4, 737-750 (1999).
    • (1999) European J .Org. Chem. , vol.4 , pp. 737-750
    • Renz, M.1    Meunier, B.2
  • 2
    • 4644319315 scopus 로고    scopus 로고
    • The baeyer-villiger reaction: New developments toward greener procedures
    • ten Brink, G. J., Arends, I. W. C. E. & Sheldon, R. A. The Baeyer-Villiger reaction: New developments toward greener procedures. Chem. Rev. 104, 4105-4123 (2004).
    • (2004) Chem. Rev. , vol.104 , pp. 4105-4123
    • Ten Brink, G.J.1    Arends, I.W.C.E.2    Sheldon, R.A.3
  • 3
    • 84923106400 scopus 로고    scopus 로고
    • An enzyme cascade synthesis of -caprolactone and its oligomers
    • Schmidt, S. et al. An enzyme cascade synthesis of -caprolactone and its oligomers. Angew. Chem. Int. Ed. 54, 2784-2787 (2015).
    • (2015) Angew. Chem. Int. Ed. , vol.54 , pp. 2784-2787
    • Schmidt, S.1
  • 4
    • 77957588918 scopus 로고    scopus 로고
    • The return of a forgotten polymer : Polycaprolactone in the 21st century
    • Woodruff, Maria A. & Hutmacher, D. W. The return of a forgotten polymer : Polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217-1256 (2010).
    • (2010) Prog. Polym. Sci. , vol.35 , pp. 1217-1256
    • Woodruff Maria, A.1    Hutmacher, D.W.2
  • 5
    • 0030942784 scopus 로고    scopus 로고
    • Theoretical investigations of the mechanism of the bayer-villiger reaction in nonpolar solvents
    • Okuno, Y. Theoretical Investigations of the Mechanism of the Bayer-Villiger Reaction in Nonpolar Solvents. Chem. Eur. J. 3, 212-218 (1997).
    • (1997) Chem. Eur. J. , vol.3 , pp. 212-218
    • Okuno, Y.1
  • 6
    • 0034699809 scopus 로고    scopus 로고
    • A concise synthesis of 3-hydroxyindole-2-carboxylates by a modified baeyer-villiger oxidation
    • Hickman, Z. L., Sturino, C. F. & Lachance, N. A concise synthesis of 3-hydroxyindole-2-carboxylates by a modified Baeyer-Villiger oxidation. Tetrahedron Lett. 41, 8217-8220 (2000).
    • (2000) Tetrahedron Lett , vol.41 , pp. 8217-8220
    • Hickman, Z.L.1    Sturino, C.F.2    Lachance, N.3
  • 7
    • 38549125462 scopus 로고    scopus 로고
    • The baeyer-villiger reaction on heterogeneous catalysts
    • Jiménez-Sanchidrián, C. & Ruiz, J. R. The Baeyer-Villiger reaction on heterogeneous catalysts. Tetrahedron 64, 2011-2026 (2008).
    • (2008) Tetrahedron , vol.64 , pp. 2011-2026
    • Jiménez-Sanchidrián, C.1    Ruiz, J.R.2
  • 8
    • 0031838334 scopus 로고    scopus 로고
    • Cyclohexanone monooxygenase: A Useful Reagent for Asymmetric Baeyer-Villiger Reactions
    • Stewart, J. D. Cyclohexanone Monooxygenase: A Useful Reagent for Asymmetric Baeyer-Villiger Reactions. Curr. Org. Chem. 2, 195-216 (1998).
    • (1998) Curr. Org. Chem. , vol.2 , pp. 195-216
    • Stewart, J.D.1
  • 9
  • 10
    • 84877301715 scopus 로고    scopus 로고
    • Cascade biotransformations via enantioselective reduction, oxidation, and hydrolysis: Preparation of (R)-lactones from 2-alkylidenecyclopentanones
    • Liu, J. & Li, Z. Cascade biotransformations via enantioselective reduction, oxidation, and hydrolysis: Preparation of (R)-lactones from 2-alkylidenecyclopentanones. ACS Catal. 3, 908-911 (2013).
    • (2013) ACS Catal , vol.3 , pp. 908-911
    • Liu, J.1    Li, Z.2
  • 12
    • 84939149187 scopus 로고    scopus 로고
    • A bi-enzymatic convergent cascade for -caprolactone synthesis employing 1,6-hexanediol as a 'double-smart cosubstrate
    • Kara, S., Bornadel, A., Hatti-Kaul, R. & Hollmann, F. A bi-enzymatic convergent cascade for -caprolactone synthesis employing 1,6-hexanediol as a 'double-smart cosubstrate'. ChemCatChem 7, 2442-2445 (2015).
    • (2015) ChemCatChem , vol.7 , pp. 2442-2445
    • Kara, S.1    Bornadel, A.2    Hatti-Kaul, R.3    Hollmann, F.4
  • 13
    • 84929956451 scopus 로고    scopus 로고
    • Directed evolution of phenylacetone monooxygenase as an active catalyst for the baeyervilliger conversion of cyclohexanone to caprolactone
    • Parra, L. P., Acevedo, J. P. & Reetz, M. T. Directed evolution of phenylacetone monooxygenase as an active catalyst for the baeyervilliger conversion of cyclohexanone to caprolactone. Biotechnol. Bioeng. 112, 1354-1364 (2015).
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 1354-1364
    • Parra, L.P.1    Acevedo, J.P.2    Reetz, M.T.3
  • 14
    • 84863953159 scopus 로고    scopus 로고
    • Discovery, application and protein engineering of baeyer-villiger monooxygenases for organic synthesis
    • Balke, K., Kadow, M., Mallin, H., Saß, S. & Bornscheuer, U. T. Discovery, application and protein engineering of Baeyer-Villiger monooxygenases for organic synthesis. Org. Biomol. Chem. 10, 6249-6265 (2012).
    • (2012) Org. Biomol. Chem. , vol.10 , pp. 6249-6265
    • Balke, K.1    Kadow, M.2    Mallin, H.3    Saß, S.4    Bornscheuer, U.T.5
  • 15
    • 84872977574 scopus 로고    scopus 로고
    • Baeyer-villiger oxidation with peracid generated in situ by calb-clea catalyzed perhydrolysis
    • Chávez, G., Hatti-Kaul, R., Sheldon, R. A. & Mamo, G. Baeyer-Villiger oxidation with peracid generated in situ by CaLB-CLEA catalyzed perhydrolysis. J. Mol. Catal. B Enzym. 89, 67-72 (2013).
    • (2013) J. Mol. Catal. B Enzym. , vol.89 , pp. 67-72
    • Chávez, G.1    Hatti-Kaul, R.2    Sheldon, R.A.3    Mamo, G.4
  • 16
    • 34250807300 scopus 로고    scopus 로고
    • Baeyer-villiger oxidation of substituted cyclohexanones via lipase-mediated perhydrolysis utilizing urea-hydrogen peroxide in ethyl acetate
    • Ríos, M. Y., Salazar, E. & Olivo, H. F. Baeyer-Villiger oxidation of substituted cyclohexanones via lipase-mediated perhydrolysis utilizing urea-hydrogen peroxide in ethyl acetate. Green Chem. 9, 459-462 (2007).
    • (2007) Green Chem. , vol.9 , pp. 459-462
    • Ríos, M.Y.1    Salazar, E.2    Olivo, H.F.3
  • 17
    • 84985029899 scopus 로고    scopus 로고
    • Lipase-driven epoxidation is a two-stage synergistic process
    • Tang, Q. et al. Lipase-Driven Epoxidation Is A Two-Stage Synergistic Process. ChemistrySelect 1, 836-839 (2016).
    • (2016) ChemistrySelect , vol.1 , pp. 836-839
    • Tang, Q.1
  • 19
    • 29844436474 scopus 로고    scopus 로고
    • Fast carbon-carbon bond formation by a promiscuous lipase
    • Svedendahl, M., Hult, K. & Berglund, P. Fast Carbon-Carbon Bond Formation by a Promiscuous Lipase. J. Am. Chem. Soc. 127, 17988-17989 (2005).
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 17988-17989
    • Svedendahl, M.1    Hult, K.2    Berglund, P.3
  • 20
    • 54349127157 scopus 로고    scopus 로고
    • Direct epoxidation in Candida antarctica lipase B studied by experiment and theory
    • Svedendahl, M. et al. Direct epoxidation in Candida antarctica lipase B studied by experiment and theory. ChemBioChem 9, 2443-2451 (2008).
    • (2008) ChemBioChem , vol.9 , pp. 2443-2451
    • Svedendahl, M.1
  • 21
    • 84963604798 scopus 로고    scopus 로고
    • Effect of deep eutectic solvent mixtures on lipase activity and stability
    • Kim, S. H. et al. Effect of deep eutectic solvent mixtures on lipase activity and stability. J. Mol. Catal. B Enzym. 128, 65-72 (2016).
    • (2016) J. Mol. Catal. B Enzym. , vol.128 , pp. 65-72
    • Kim, S.H.1
  • 22
    • 84961753812 scopus 로고    scopus 로고
    • Enzymatic selective synthesis of 1,3-dag based on deep eutectic solvent acting as substrate and solvent
    • Zeng, C. X., Qi, S. J., Xin, R. P., Yang, B. & Wang, Y. H. Enzymatic selective synthesis of 1,3-DAG based on deep eutectic solvent acting as substrate and solvent. Bioprocess Biosyst. Eng. 38, 2053-2061 (2015).
    • (2015) Bioprocess Biosyst. Eng. , vol.38 , pp. 2053-2061
    • Zeng, C.X.1    Qi, S.J.2    Xin, R.P.3    Yang, B.4    Wang, Y.H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.