-
1
-
-
79952171625
-
Probing the links between in vitro potency, ADMET and physicochemical parameters
-
Gleeson MP, Hersey A, Montanari D, et al. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov 2011;10:197-208.
-
(2011)
Nat Rev Drug Discov
, vol.10
, pp. 197-208
-
-
Gleeson, M.P.1
Hersey, A.2
Montanari, D.3
-
2
-
-
13544270908
-
Predicting aqueous solubility from structure
-
Delaney JS. Predicting aqueous solubility from structure. Drug Discov Today 2005;10:289-295.
-
(2005)
Drug Discov Today
, vol.10
, pp. 289-295
-
-
Delaney, J.S.1
-
3
-
-
79955741760
-
Recent advances on aqueous solubility prediction
-
Wang J, Hou T. Recent advances on aqueous solubility prediction. Comb Chem High Throughput Screen 2011;14:328-338.
-
(2011)
Comb Chem High Throughput Screen
, vol.14
, pp. 328-338
-
-
Wang, J.1
Hou, T.2
-
4
-
-
39449138204
-
Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and log P
-
Hughes LD, Palmer DS, Nigsch F, et al. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and log P. J Chem Info Model 2008;48:220-232.
-
(2008)
J Chem Info Model
, vol.48
, pp. 220-232
-
-
Hughes, L.D.1
Palmer, D.S.2
Nigsch, F.3
-
5
-
-
39149140400
-
High confidence predictions of drug-drug interactions: Predicting affinities for cytochrome P450 2C9 with multiple computational methods
-
Hudelson MG, Ketkar NS, Holder LB, et al. High confidence predictions of drug-drug interactions: Predicting affinities for cytochrome P450 2C9 with multiple computational methods. J Med Chem 2008;51:648-654.
-
(2008)
J Med Chem
, vol.51
, pp. 648-654
-
-
Hudelson, M.G.1
Ketkar, N.S.2
Holder, L.B.3
-
6
-
-
13844254976
-
Predictive in silico modeling for hERG channel blockers
-
Aronov AM. Predictive in silico modeling for hERG channel blockers. Drug Discov Today 2005;10:149-155.
-
(2005)
Drug Discov Today
, vol.10
, pp. 149-155
-
-
Aronov, A.M.1
-
7
-
-
33244474244
-
Development and evaluation of an in silico model for hERG binding
-
Song M, Clark M. Development and evaluation of an in silico model for hERG binding. J Chem Info Model 2006;46:392-400.
-
(2006)
J Chem Info Model
, vol.46
, pp. 392-400
-
-
Song, M.1
Clark, M.2
-
8
-
-
80053330055
-
CSAR benchmark exercise of 2010: Combined evaluation across all submitted scoring functions
-
Smith RD, Dunbar JB, Jr, Ung PM, et al. CSAR benchmark exercise of 2010: Combined evaluation across all submitted scoring functions. J Chem Info Model 2011;51: 2115-2131.
-
(2011)
J Chem Info Model
, vol.51
, pp. 2115-2131
-
-
Smith, R.D.1
Dunbar, J.B.2
Ung, P.M.3
-
9
-
-
80053386667
-
-
2nd ed. Greenwich: Manning Publications
-
Ceder V. The Quick Python Book. 2nd ed. Greenwich: Manning Publications; 2010. p 400.
-
(2010)
The Quick Python Book
, pp. 400
-
-
Ceder, V.1
-
13
-
-
0034461768
-
Drug-like properties and the causes of poor solubility and poor permeability
-
Lipinski C. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000;44:235-249.
-
(2000)
J Pharmacol Toxicol Methods
, vol.44
, pp. 235-249
-
-
Lipinski, C.1
-
14
-
-
1542741028
-
ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach
-
Hou TJ, Xia K, Zhang W, et al. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J Chem Info Model 2004;44:266-275.
-
(2004)
J Chem Info Model
, vol.44
, pp. 266-275
-
-
Hou, T.J.1
Xia, K.2
Zhang, W.3
-
15
-
-
0001645890
-
Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology
-
Huuskonen J. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J Chem Info Model 2000;40:773-777.
-
(2000)
J Chem Info Model
, vol.40
, pp. 773-777
-
-
Huuskonen, J.1
-
16
-
-
0032061266
-
Aqueous solubility prediction of drugs based on molecular topology and neural network modeling
-
Huuskonen J, Salo M, Taskinen J. Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J Chem Info Model 1998;38:450-456.
-
(1998)
J Chem Info Model
, vol.38
, pp. 450-456
-
-
Huuskonen, J.1
Salo, M.2
Taskinen, J.3
-
17
-
-
0035526162
-
Estimation of aqueous solubility of chemical compounds using E-state indices
-
Tetko IV, Tanchuk VY, Kasheva TN, et al. Estimation of aqueous solubility of chemical compounds using E-state indices. J Chem Info Model 2001;41:1488-1493.
-
(2001)
J Chem Info Model
, vol.41
, pp. 1488-1493
-
-
Tetko, I.V.1
Tanchuk, V.Y.2
Kasheva, T.N.3
-
18
-
-
0026566715
-
AQUAFAC 1: Aqueous functional group activity coefficients; application to hydrocarbons
-
Myrdal P, Ward GH, Dannenfelser RM, et al. AQUAFAC 1: Aqueous functional group activity coefficients; application to hydrocarbons. Chemosphere 1992;24:1047-1061.
-
(1992)
Chemosphere
, vol.24
, pp. 1047-1061
-
-
Myrdal, P.1
Ward, G.H.2
Dannenfelser, R.M.3
-
19
-
-
85016002253
-
-
May 14
-
http://www.pharmacy.arizona.edu/outreach/aquasol/index.html. Accessed 2013 May 14.
-
(2013)
-
-
-
20
-
-
85016008542
-
-
May 14
-
http://www.srcinc.com/what-we-do/product.aspx?id=133. Accessed 2013 May 14.
-
(2013)
-
-
-
21
-
-
49449113247
-
Solubility challenge: Can you predict solubilities of 32 molecules using a database of 100 reliable measurements?
-
Llinàs A, Glen RC, Goodman JM. Solubility challenge: Can you predict solubilities of 32 molecules using a database of 100 reliable measurements? J Chem Info Model 2008; 48:1289-1303.
-
(2008)
J Chem Info Model
, vol.48
, pp. 1289-1303
-
-
Llinàs, A.1
Glen, R.C.2
Goodman, J.M.3
-
23
-
-
79959501616
-
Exploratory analysis of kinetic solubility measurements of a small molecule library
-
Guha R, Dexheimer TS, Kestranek AN, et al. Exploratory analysis of kinetic solubility measurements of a small molecule library. Bioorg Med Chem 2011;19:4127-4134.
-
(2011)
Bioorg Med Chem
, vol.19
, pp. 4127-4134
-
-
Guha, R.1
Dexheimer, T.S.2
Kestranek, A.N.3
-
24
-
-
85016031114
-
-
May 14
-
http://flowingdata.com/2008/02/15/how-to-read-and-use-a-box-and-whisker-plot/. Accessed 2013 May 14.
-
(2013)
-
-
-
25
-
-
85016064405
-
-
May 14
-
http://flowingdata.com/2012/05/15/how-to-visualize-and-compare-distributions/. Accessed 2013 May 14.
-
(2013)
-
-
-
26
-
-
85016011612
-
-
May 14
-
http://en.wikipedia.org/wiki/Box_plot. Accessed 2013 May 14.
-
(2013)
-
-
-
29
-
-
77956734967
-
Machine learning in computational chemistry
-
Goldman BB, Walters WP. Machine learning in computational chemistry. Annu Rep Comput Chem 2006;2:127-140.
-
(2006)
Annu Rep Comput Chem
, vol.2
, pp. 127-140
-
-
Goldman, B.B.1
Walters, W.P.2
-
30
-
-
85016017748
-
-
May 14
-
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient. Accessed 2013 May 14.
-
(2013)
-
-
-
31
-
-
0004285343
-
-
New York: McGraw-Hill Medical
-
Glantz, S. Primer of Biostatistics. New York: McGraw-Hill Medical; 2011. p 320.
-
(2011)
Primer of Biostatistics
, pp. 320
-
-
Glantz, S.1
-
32
-
-
85016023906
-
-
May 14
-
http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient. Accessed 2013 May 14.
-
(2013)
-
-
-
33
-
-
85016018928
-
-
May 14
-
http://en.wikipedia.org/wiki/Root-mean-square_deviation. Accessed 2013 May 14.
-
(2013)
-
-
-
34
-
-
79955016724
-
Making sure there's a "give" associated with the "take": Producing and using open-source software in big pharma
-
Landrum G, Lewis R, Palmer A, et al. Making sure there's a "give" associated with the "take": Producing and using open-source software in big pharma. J Cheminform 2011;3:1-1.
-
(2011)
J Cheminform
, vol.3
, pp. 1-1
-
-
Landrum, G.1
Lewis, R.2
Palmer, A.3
-
35
-
-
85016051706
-
-
May 14
-
http://www.rdkit.org/. Accessed 2013 May 14.
-
(2013)
-
-
-
36
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn 2001;45:5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
37
-
-
0345040873
-
Classification and regression by random forest
-
Liaw A, Wiener M. Classification and regression by random forest. R News 2002;2:18-22.
-
(2002)
R News
, vol.2
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
38
-
-
0345548657
-
Random forest: A classification and regression tool for compound classification and QSAR modeling
-
Svetnik V, Liaw A, Tong C, et al. Random forest: A classification and regression tool for compound classification and QSAR modeling. J Chem Info Comput Sci 2003;43:1947-1958.
-
(2003)
J Chem Info Comput Sci
, vol.43
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
-
39
-
-
54349105915
-
Prediction of human intestinal absorption by GA feature selection and support vector machine regression
-
Yan A, Wang Z, Cai Z. Prediction of human intestinal absorption by GA feature selection and support vector machine regression. Int J Mol Sci 2008;9:1961-1976.
-
(2008)
Int J Mol Sci
, vol.9
, pp. 1961-1976
-
-
Yan, A.1
Wang, Z.2
Cai, Z.3
-
40
-
-
0037361981
-
Prediction of aqueous solubility of organic compounds based on a 3D structure representation
-
Yan A, Gasteiger J. Prediction of aqueous solubility of organic compounds based on a 3D structure representation. J Chem Info Model 2003;43:429-434.
-
(2003)
J Chem Info Model
, vol.43
, pp. 429-434
-
-
Yan, A.1
Gasteiger, J.2
-
41
-
-
62849109096
-
Healthy skepticism: Assessing realistic model performance
-
Brown SP, Muchmore SW, Hajduk PJ. Healthy skepticism: Assessing realistic model performance. Drug Discov Today 2009;14:420-427.
-
(2009)
Drug Discov Today
, vol.14
, pp. 420-427
-
-
Brown, S.P.1
Muchmore, S.W.2
Hajduk, P.J.3
-
42
-
-
10044263240
-
Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR
-
Sheridan RP, Feuston BP, Maiorov VN, et al. Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J Chem Info Comput Sci 2004;44:1912-1928.
-
(2004)
J Chem Info Comput Sci
, vol.44
, pp. 1912-1928
-
-
Sheridan, R.P.1
Feuston, B.P.2
Maiorov, V.N.3
-
43
-
-
33750336399
-
Lingos, finite state machines, and fast similarity searching
-
Grant J, Haigh J, Pickup B, et al. Lingos, finite state machines, and fast similarity searching. J Chem Inf Model 2006; 46:1912-1918.
-
(2006)
J Chem Inf Model
, vol.46
, pp. 1912-1918
-
-
Grant, J.1
Haigh, J.2
Pickup, B.3
-
44
-
-
33646249968
-
New methods for ligand-based virtual screening: Use of data fusion and machine learning to enhance the effectiveness of similarity searching
-
Hert J, Willett P, Wilton DJ, et al. New methods for ligand-based virtual screening: Use of data fusion and machine learning to enhance the effectiveness of similarity searching. J Chem Info Model 2006;46:462-470.
-
(2006)
J Chem Info Model
, vol.46
, pp. 462-470
-
-
Hert, J.1
Willett, P.2
Wilton, D.J.3
-
45
-
-
44449162145
-
A comparison of field-based similarity searching methods: CatShape, FBSS, and ROCS
-
Moffat K, Gillet VJ, Whittle M, et al. A comparison of field-based similarity searching methods: CatShape, FBSS, and ROCS. J Chem Info Model 2008;48:719-729.
-
(2008)
J Chem Info Model
, vol.48
, pp. 719-729
-
-
Moffat, K.1
Gillet, V.J.2
Whittle, M.3
-
46
-
-
45749116266
-
Application of belief theory to similarity data fusion for use in analog searching and lead hopping
-
Muchmore SW, Debe DA, Metz JT, et al. Application of belief theory to similarity data fusion for use in analog searching and lead hopping. J Chem Info Model 2008;48:941-948.
-
(2008)
J Chem Info Model
, vol.48
, pp. 941-948
-
-
Muchmore, S.W.1
Debe, D.A.2
Metz, J.T.3
-
47
-
-
61949166066
-
How similar are similarity searching methods? A principal component analysis of molecular descriptor space
-
Bender A, Jenkins JL, Scheiber J, et al. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Info Model 2009;49:108-119.
-
(2009)
J Chem Info Model
, vol.49
, pp. 108-119
-
-
Bender, A.1
Jenkins, J.L.2
Scheiber, J.3
-
48
-
-
77952716960
-
Molecular shape and medicinal chemistry: A perspective
-
Nicholls A, McGaughey GB, Sheridan RP, et al. Molecular shape and medicinal chemistry: A perspective. J Med Chem 2010;53:3862.
-
(2010)
J Med Chem
, vol.53
, pp. 3862
-
-
Nicholls, A.1
McGaughey, G.B.2
Sheridan, R.P.3
-
50
-
-
41349093326
-
What do we know and when do we know it?
-
Nicholls A. What do we know and when do we know it? J Comput Aided Mol Des 2008;22:239-255.
-
(2008)
J Comput Aided Mol Des
, vol.22
, pp. 239-255
-
-
Nicholls, A.1
-
51
-
-
41349106542
-
Recommendations for evaluation of computational methods
-
Jain AN, Nicholls A. Recommendations for evaluation of computational methods. J Comput Aided Mol Des 2008;22:133-139.
-
(2008)
J Comput Aided Mol Des
, vol.22
, pp. 133-139
-
-
Jain, A.N.1
Nicholls, A.2
|