-
1
-
-
0026583748
-
Splicing with inverted order of exons occurs proximal to large introns
-
Cocquerelle C, Daubersies P, Majerus MA, Kerckaert JP, Bailleul B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J 1992; 11:1095-1098.
-
(1992)
EMBO J
, vol.11
, pp. 1095-1098
-
-
Cocquerelle, C.1
Daubersies, P.2
Majerus, M.A.3
Kerckaert, J.P.4
Bailleul, B.5
-
3
-
-
84872531655
-
Circular RNAs are abundant, conserved, and associated with ALU repeats
-
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19:141-157.
-
(2013)
RNA
, vol.19
, pp. 141-157
-
-
Jeck, W.R.1
Sorrentino, J.A.2
Wang, K.3
-
4
-
-
84875369248
-
Circular RNAs are a large class of animal RNAs with regulatory potency
-
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495:333-338.
-
(2013)
Nature
, vol.495
, pp. 333-338
-
-
Memczak, S.1
Jens, M.2
Elefsinioti, A.3
-
5
-
-
84863045982
-
Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types
-
Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012; 7:e30733.
-
(2012)
PLoS One
, vol.7
, pp. e30733
-
-
Salzman, J.1
Gawad, C.2
Wang, P.L.3
Lacayo, N.4
Brown, P.O.5
-
6
-
-
84884687363
-
Celltype specific features of circular RNA expression
-
Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Celltype specific features of circular RNA expression. PLoS Genet 2013; 9:e1003777.
-
(2013)
PLoS Genet
, vol.9
, pp. e1003777
-
-
Salzman, J.1
Chen, R.E.2
Olsen, M.N.3
Wang, P.L.4
Brown, P.O.5
-
7
-
-
84875372911
-
Natural RNA circles function as efficient microRNA sponges
-
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495:384-388.
-
(2013)
Nature
, vol.495
, pp. 384-388
-
-
Hansen, T.B.1
Jensen, T.I.2
Clausen, B.H.3
-
8
-
-
84907509527
-
Complementary sequence-mediated exon circularization
-
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell 2014; 159:134-147.
-
(2014)
Cell
, vol.159
, pp. 134-147
-
-
Zhang, X.O.1
Wang, H.B.2
Zhang, Y.3
Lu, X.4
Chen, L.L.5
Yang, L.6
-
9
-
-
84908093894
-
Short intronic repeat sequences facilitate circular RNA production
-
Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev 2014; 28:2233-2247.
-
(2014)
Genes Dev
, vol.28
, pp. 2233-2247
-
-
Liang, D.1
Wilusz, J.E.2
-
10
-
-
84920923470
-
Exon circularization requires canonical splice signals
-
Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals. Cell Rep 2015; 10:103-111.
-
(2015)
Cell Rep
, vol.10
, pp. 103-111
-
-
Starke, S.1
Jost, I.2
Rossbach, O.3
-
11
-
-
84921368391
-
Efficient backsplicing produces translatable circular mRNAs
-
Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA 2015; 21:172-179.
-
(2015)
RNA
, vol.21
, pp. 172-179
-
-
Wang, Y.1
Wang, Z.2
-
12
-
-
84911476411
-
CircRNA biogenesis competes with pre-mRNA splicing
-
Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014; 56:55-66.
-
(2014)
Mol Cell
, vol.56
, pp. 55-66
-
-
Ashwal-Fluss, R.1
Meyer, M.2
Pamudurti, N.R.3
-
13
-
-
0029053190
-
Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs
-
Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995; 268:415-417.
-
(1995)
Science
, vol.268
, pp. 415-417
-
-
Chen, C.Y.1
Sarnow, P.2
-
14
-
-
84956906428
-
Expanded identification and characterization of mammalian circular RNAs
-
Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol 2014; 15:409.
-
(2014)
Genome Biol
, vol.15
, pp. 409
-
-
Guo, J.U.1
Agarwal, V.2
Guo, H.3
Bartel, D.P.4
-
15
-
-
84925773568
-
Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity
-
You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 2015; 18:603-610.
-
(2015)
Nat Neurosci
, vol.18
, pp. 603-610
-
-
You, X.1
Vlatkovic, I.2
Babic, A.3
-
16
-
-
84906852434
-
The pivotal regulatory landscape of RNA modifications
-
Li S, Mason CE. The pivotal regulatory landscape of RNA modifications. Annu Rev Genomics Hum Genet 2014; 15:127-150.
-
(2014)
Annu Rev Genomics Hum Genet
, vol.15
, pp. 127-150
-
-
Li, S.1
Mason, C.E.2
-
17
-
-
0016770156
-
Methylated nucleotides block 5 terminus of HeLa cell messenger RNA
-
Wei CM, Gershowitz A, Moss B. Methylated nucleotides block 5 terminus of HeLa cell messenger RNA. Cell 1975; 4:379-386.
-
(1975)
Cell
, vol.4
, pp. 379-386
-
-
Wei, C.M.1
Gershowitz, A.2
Moss, B.3
-
18
-
-
0025245501
-
Sequence specificity of mRNA N6-adenosine methyltransferase
-
Csepany T, Lin A, Baldick CJ Jr, Beemon K. Sequence specificity of mRNA N6-adenosine methyltransferase. J Biol Chem 1990; 265:20117-20122.
-
(1990)
J Biol Chem
, vol.265
, pp. 20117-20122
-
-
Csepany, T.1
Lin, A.2
Baldick, C.J.3
Beemon, K.4
-
20
-
-
84862649489
-
Comprehensive analysis of mRNA methylation reveals enrichment in 3 UTRs and near stop codons
-
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3 UTRs and near stop codons. Cell 2012; 149:1635-1646.
-
(2012)
Cell
, vol.149
, pp. 1635-1646
-
-
Meyer, K.D.1
Saletore, Y.2
Zumbo, P.3
Elemento, O.4
Mason, C.E.5
Jaffrey, S.R.6
-
21
-
-
84860779086
-
Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
-
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485:201-206.
-
(2012)
Nature
, vol.485
, pp. 201-206
-
-
Dominissini, D.1
Moshitch-Moshkovitz, S.2
Schwartz, S.3
-
22
-
-
0030712151
-
Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase
-
Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 1997; 3:1233-1247.
-
(1997)
RNA
, vol.3
, pp. 1233-1247
-
-
Bokar, J.A.1
Shambaugh, M.E.2
Polayes, D.3
Matera, A.G.4
Rottman, F.M.5
-
23
-
-
84897110592
-
A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation
-
Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2014; 10:93-95.
-
(2014)
Nat Chem Biol
, vol.10
, pp. 93-95
-
-
Liu, J.1
Yue, Y.2
Han, D.3
-
24
-
-
84893310526
-
N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells
-
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 2014; 16:191-198.
-
(2014)
Nat Cell Biol
, vol.16
, pp. 191-198
-
-
Wang, Y.1
Li, Y.2
Toth, J.I.3
Petroski, M.D.4
Zhang, Z.5
Zhao, J.C.6
-
25
-
-
84893746230
-
Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase
-
Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24:177-189.
-
(2014)
Cell Res
, vol.24
, pp. 177-189
-
-
Ping, X.L.1
Sun, B.F.2
Wang, L.3
-
26
-
-
81355146483
-
N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO
-
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7:885-887.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 885-887
-
-
Jia, G.1
Fu, Y.2
Zhao, X.3
-
27
-
-
84872274463
-
ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility
-
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013; 49:18-29.
-
(2013)
Mol Cell
, vol.49
, pp. 18-29
-
-
Zheng, G.1
Dahl, J.A.2
Niu, Y.3
-
28
-
-
84937002114
-
RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation
-
Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 2015; 29:1343-1355.
-
(2015)
Genes Dev
, vol.29
, pp. 1343-1355
-
-
Yue, Y.1
Liu, J.2
He, C.3
-
29
-
-
84899586607
-
The dynamic epitranscriptome: N6-methyladenosine and gene expression control
-
Meyer KD, Jaffrey SR. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol 2014; 15:313-326.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 313-326
-
-
Meyer, K.D.1
Jaffrey, S.R.2
-
30
-
-
84930621650
-
N(6)-methyladenosine modulates messenger RNA translation efficiency
-
Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 2015; 161:1388-1399.
-
(2015)
Cell
, vol.161
, pp. 1388-1399
-
-
Wang, X.1
Zhao, B.S.2
Roundtree, I.A.3
-
31
-
-
84945288814
-
Dynamic m(6)A mRNA methylation directs translational control of heat shock response
-
Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 2015; 526:591-594.
-
(2015)
Nature
, vol.526
, pp. 591-594
-
-
Zhou, J.1
Wan, J.2
Gao, X.3
Zhang, X.4
Jaffrey, S.R.5
Qian, S.B.6
-
32
-
-
84946228509
-
5 UTR m(6)A promotes cap-independent translation
-
Meyer KD, Patil DP, Zhou J, et al. 5 UTR m(6)A promotes cap-independent translation. Cell 2015; 163:999-1010.
-
(2015)
Cell
, vol.163
, pp. 999-1010
-
-
Meyer, K.D.1
Patil, D.P.2
Zhou, J.3
-
33
-
-
85010015234
-
YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA
-
Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 2017; 27:315-328.
-
(2017)
Cell Res
, vol.27
, pp. 315-328
-
-
Shi, H.1
Wang, X.2
Lu, Z.3
-
34
-
-
85009956060
-
Cytoplasmic m6A reader YTHDF3 promotes mRNA translation
-
Li A, Chen YS, Ping XL, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res 2017; 27:444-447.
-
(2017)
Cell Res
, vol.27
, pp. 444-447
-
-
Li, A.1
Chen, Y.S.2
Ping, X.L.3
-
35
-
-
84938417580
-
Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome
-
Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 2015; 12:767-772.
-
(2015)
Nat Methods
, vol.12
, pp. 767-772
-
-
Linder, B.1
Grozhik, A.V.2
Olarerin-George, A.O.3
Meydan, C.4
Mason, C.E.5
Jaffrey, S.R.6
-
36
-
-
84892372347
-
N6-methyladenosine-dependent regulation of messenger RNA stability
-
Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505:117-120.
-
(2014)
Nature
, vol.505
, pp. 117-120
-
-
Wang, X.1
Lu, Z.2
Gomez, A.3
-
37
-
-
38849172516
-
Re-programming of translation following cell stress allows IRES-mediated translation to predominate
-
Spriggs KA, Stoneley M, Bushell M, Willis AE. Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 2008; 100:27-38.
-
(2008)
Biol Cell
, vol.100
, pp. 27-38
-
-
Spriggs, K.A.1
Stoneley, M.2
Bushell, M.3
Willis, A.E.4
-
38
-
-
60149091189
-
Regulation of translation initiation in eukaryotes: Mechanisms and biological targets
-
Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009; 136:731-745.
-
(2009)
Cell
, vol.136
, pp. 731-745
-
-
Sonenberg, N.1
Hinnebusch, A.G.2
-
39
-
-
84930508194
-
DAP5 associates with eIF2beta and eIF4AI to promote internal ribosome entry site driven translation
-
Liberman N, Gandin V, Svitkin YV, et al. DAP5 associates with eIF2beta and eIF4AI to promote internal ribosome entry site driven translation. Nucleic Acids Res 2015; 43:3764-3775.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 3764-3775
-
-
Liberman, N.1
Gandin, V.2
Svitkin, Y.V.3
-
40
-
-
84883477130
-
Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation
-
Sun C, Querol-Audi J, Mortimer SA, et al. Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation. Nucleic Acids Res 2013; 41:7512-7521.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7512-7521
-
-
Sun, C.1
Querol-Audi, J.2
Mortimer, S.A.3
-
41
-
-
0018141671
-
Studies on the mode of action of hygromycin B, an inhibitor of translocation in eukaryotes
-
Gonzalez A, Jimenez A, Vazquez D, Davies JE, Schindler D. Studies on the mode of action of hygromycin B, an inhibitor of translocation in eukaryotes. Biochim Biophys Acta 1978; 521:459-469.
-
(1978)
Biochim Biophys Acta
, vol.521
, pp. 459-469
-
-
Gonzalez, A.1
Jimenez, A.2
Vazquez, D.3
Davies, J.E.4
Schindler, D.5
-
42
-
-
84866267681
-
Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution
-
Lee S, Liu B, Huang SX, Shen B, Qian SB. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc Natl Acad Sci USA 2012; 109:E2424-2432.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E2424-2432
-
-
Lee, S.1
Liu, B.2
Huang, S.X.3
Shen, B.4
Qian, S.B.5
-
43
-
-
84908128765
-
CircBase: A database for circular RNAs
-
Glazar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA 2014; 20:1666-1670.
-
(2014)
RNA
, vol.20
, pp. 1666-1670
-
-
Glazar, P.1
Papavasileiou, P.2
Rajewsky, N.3
-
44
-
-
84930958887
-
Stress-mediated translational control in cancer cells
-
Leprivier G, Rotblat B, Khan D, Jan E, Sorensen PH. Stress-mediated translational control in cancer cells. Biochim Biophys Acta 2015; 1849:845-860.
-
(2015)
Biochim Biophys Acta
, vol.1849
, pp. 845-860
-
-
Leprivier, G.1
Rotblat, B.2
Khan, D.3
Jan, E.4
Sorensen, P.H.5
-
46
-
-
84922489184
-
Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes
-
Ingolia NT, Brar GA, Stern-Ginossar N, et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep 2014; 8:1365-1379.
-
(2014)
Cell Rep
, vol.8
, pp. 1365-1379
-
-
Ingolia, N.T.1
Brar, G.A.2
Stern-Ginossar, N.3
-
47
-
-
84891798215
-
TISdb: A database for alternative translation initiation in mammalian cells
-
Wan J, Qian SB. TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Res 2014; 42:D845-D850.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D845-D850
-
-
Wan, J.1
Qian, S.B.2
-
48
-
-
0035106351
-
Large-scale analysis of the yeast proteome by multidimensional protein identification technology
-
Washburn MP, Wolters D, Yates JR, III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001; 19:242-247.
-
(2001)
Nat Biotechnol
, vol.19
, pp. 242-247
-
-
Washburn, M.P.1
Wolters, D.2
Yates, J.R.3
-
49
-
-
77951770756
-
BEDTools: A flexible suite of utilities for comparing genomic features
-
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841-842.
-
(2010)
Bioinformatics
, vol.26
, pp. 841-842
-
-
Quinlan, A.R.1
Hall, I.M.2
|