-
1
-
-
85014558595
-
-
Mpi 3.0 standard. www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf, 2012.
-
(2012)
Mpi 3.0 Standard
-
-
-
2
-
-
84872577736
-
Practical recommendations for gradient-based training of deep architectures
-
Springer
-
Y. Bengio. Practical recommendations for gradient-based training of deep architectures. In Neural Networks: Tricks of the Trade, pages 437-478. Springer, 2012.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 437-478
-
-
Bengio, Y.1
-
4
-
-
85069497682
-
Project Adam: Building an efficient and scalable deep learning training system
-
T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project Adam: Building an efficient and scalable deep learning training system. OSDI'14, pages 571-582, 2014.
-
(2014)
OSDI'14
, pp. 571-582
-
-
Chilimbi, T.1
Suzue, Y.2
Apacible, J.3
Kalyanaraman, K.4
-
5
-
-
84894294885
-
Deep learning with cots HPC systems
-
A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew. Deep learning with cots hpc systems. In Proceedings of the 30th ICML, pages 1337-1345, 2013.
-
(2013)
Proceedings of the 30th ICML
, pp. 1337-1345
-
-
Coates, A.1
Huval, B.2
Wang, T.3
Wu, D.4
Catanzaro, B.5
Andrew, N.6
-
6
-
-
85077475089
-
Exploiting bounded staleness to speed up big data analytics
-
H. e. a. Cui. Exploiting bounded staleness to speed up big data analytics. In USENIX ATC'14, pages 37-48, 2014.
-
(2014)
USENIX ATC'14
, pp. 37-48
-
-
Cui, H.E.A.1
-
7
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Dean, J.1
Corrado, G.S.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.V.6
Mao, M.Z.7
Ranzato, M.8
Senior, P.9
Tucker, P.10
Yang, K.11
Ng, A.Y.12
-
8
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12:2121-2159, 2011.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
9
-
-
84945944033
-
Image net large scale visual recognition challenge
-
O. R. et al. ImageNet Large Scale Visual Recognition Challenge. IJCV, pages 1-42, 2015.
-
(2015)
IJCV
, pp. 1-42
-
-
-
10
-
-
84862277874
-
Understanding the difficulty of training deep feed forward neural networks
-
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, pages 249-256, 2010.
-
(2010)
AISTATS
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
12
-
-
84898988368
-
More effective distributed ML via a stale synchronous parallel parameter server
-
Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger, and E. P. Xing. More effective distributed ML via a stale synchronous parallel parameter server. In NIPS 26, pages 1223-1231. 2013.
-
(2013)
NIPS
, vol.26
, pp. 1223-1231
-
-
Ho, Q.1
Cipar, J.2
Cui, H.3
Lee, S.4
Kim, J.K.5
Gibbons, P.B.6
Gibson, G.A.7
Ganger, G.8
Xing, E.P.9
-
14
-
-
84913555165
-
-
arXiv preprint arXiv:1408.5093
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
15
-
-
77956002520
-
Learning multiple layers of features from tiny images
-
A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Computer Science Department, University of Toronto, Tech. Rep, 1(4):7, 2009.
-
(2009)
Computer Science Department, University of Toronto, Tech. Rep
, vol.1
, Issue.4
, pp. 7
-
-
Krizhevsky, A.1
Hinton, G.2
-
17
-
-
0017996760
-
Time, clocks, and the ordering of events in a distributed system
-
L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558-565, 1978.
-
(1978)
Commun
, vol.21
, Issue.7
, pp. 558-565
-
-
Lamport, L.1
-
18
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
20
-
-
0030085656
-
Logical time: Capturing causality in distributed systems
-
M. Raynal and M. Singhal. Logical time: Capturing causality in distributed systems. Computer, 29(2):49-56, 1996.
-
(1996)
Computer
, vol.29
, Issue.2
, pp. 49-56
-
-
Raynal, M.1
Singhal, M.2
-
21
-
-
84887388950
-
An empirical study of learning rates in deep neural networks for speech recognition
-
IEEE
-
A. Senior, G. Heigold, M. Ranzato, and K. Yang. An empirical study of learning rates in deep neural networks for speech recognition. In ICASSP, pages 6724-6728. IEEE, 2013.
-
(2013)
ICASSP
, pp. 6724-6728
-
-
Senior, A.1
Heigold, G.2
Ranzato, M.3
Yang, K.4
-
22
-
-
80052119994
-
An architecture for parallel topic models
-
A. Smola and S. Narayanamurthy. An architecture for parallel topic models. Proc. VLDB Endow., 3(1-2):703-710, 2010.
-
(2010)
Proc. VLDB Endow
, vol.3
, Issue.1-2
, pp. 703-710
-
-
Smola, A.1
Narayanamurthy, S.2
-
23
-
-
84892623436
-
On the importance of initialization and momentum in deep learning
-
I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum in deep learning. In Proceedinge of the 30th ICML, pages 1139-1147, 2013.
-
(2013)
Proceedinge of the 30th ICML
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
25
-
-
85014523954
-
Deep learning with elastic averaging SGD
-
abs/1412.6651
-
S. Zhang, A. Choromanska, and Y. LeCun. Deep learning with elastic averaging SGD. CoRR, abs/1412.6651, 2014.
-
(2014)
CoRR
-
-
Zhang, S.1
Choromanska, A.2
LeCun, Y.3
-
26
-
-
84905865959
-
Mariana: Tencent deep learning platform and its applications
-
Y. Zou, X. Jin, Y. Li, Z. Guo, E. Wang, and B. Xiao. Mariana: Tencent deep learning platform and its applications. Proc. VLDB Endow., 7(13):1772-1777, 2014.
-
(2014)
Proc. VLDB Endow
, vol.7
, Issue.13
, pp. 1772-1777
-
-
Zou, Y.1
Jin, X.2
Li, Y.3
Guo, Z.4
Wang, E.5
Xiao, B.6
|