메뉴 건너뛰기




Volumn 0, Issue , 2016, Pages 171-180

Model accuracy and runtime tradeoff in distributed deep learning: A systematic study

Author keywords

[No Author keywords available]

Indexed keywords

DISTRIBUTED COMPUTER SYSTEMS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 85014543286     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2016.122     Document Type: Conference Paper
Times cited : (158)

References (26)
  • 1
    • 85014558595 scopus 로고    scopus 로고
    • Mpi 3.0 standard. www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf, 2012.
    • (2012) Mpi 3.0 Standard
  • 2
    • 84872577736 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • Springer
    • Y. Bengio. Practical recommendations for gradient-based training of deep architectures. In Neural Networks: Tricks of the Trade, pages 437-478. Springer, 2012.
    • (2012) Neural Networks: Tricks of the Trade , pp. 437-478
    • Bengio, Y.1
  • 4
    • 85069497682 scopus 로고    scopus 로고
    • Project Adam: Building an efficient and scalable deep learning training system
    • T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project Adam: Building an efficient and scalable deep learning training system. OSDI'14, pages 571-582, 2014.
    • (2014) OSDI'14 , pp. 571-582
    • Chilimbi, T.1    Suzue, Y.2    Apacible, J.3    Kalyanaraman, K.4
  • 6
    • 85077475089 scopus 로고    scopus 로고
    • Exploiting bounded staleness to speed up big data analytics
    • H. e. a. Cui. Exploiting bounded staleness to speed up big data analytics. In USENIX ATC'14, pages 37-48, 2014.
    • (2014) USENIX ATC'14 , pp. 37-48
    • Cui, H.E.A.1
  • 8
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12:2121-2159, 2011.
    • (2011) The Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 9
    • 84945944033 scopus 로고    scopus 로고
    • Image net large scale visual recognition challenge
    • O. R. et al. ImageNet Large Scale Visual Recognition Challenge. IJCV, pages 1-42, 2015.
    • (2015) IJCV , pp. 1-42
  • 10
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feed forward neural networks
    • X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, pages 249-256, 2010.
    • (2010) AISTATS , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 12
    • 84898988368 scopus 로고    scopus 로고
    • More effective distributed ML via a stale synchronous parallel parameter server
    • Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger, and E. P. Xing. More effective distributed ML via a stale synchronous parallel parameter server. In NIPS 26, pages 1223-1231. 2013.
    • (2013) NIPS , vol.26 , pp. 1223-1231
    • Ho, Q.1    Cipar, J.2    Cui, H.3    Lee, S.4    Kim, J.K.5    Gibbons, P.B.6    Gibson, G.A.7    Ganger, G.8    Xing, E.P.9
  • 17
    • 0017996760 scopus 로고
    • Time, clocks, and the ordering of events in a distributed system
    • L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558-565, 1978.
    • (1978) Commun , vol.21 , Issue.7 , pp. 558-565
    • Lamport, L.1
  • 18
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 20
    • 0030085656 scopus 로고    scopus 로고
    • Logical time: Capturing causality in distributed systems
    • M. Raynal and M. Singhal. Logical time: Capturing causality in distributed systems. Computer, 29(2):49-56, 1996.
    • (1996) Computer , vol.29 , Issue.2 , pp. 49-56
    • Raynal, M.1    Singhal, M.2
  • 21
    • 84887388950 scopus 로고    scopus 로고
    • An empirical study of learning rates in deep neural networks for speech recognition
    • IEEE
    • A. Senior, G. Heigold, M. Ranzato, and K. Yang. An empirical study of learning rates in deep neural networks for speech recognition. In ICASSP, pages 6724-6728. IEEE, 2013.
    • (2013) ICASSP , pp. 6724-6728
    • Senior, A.1    Heigold, G.2    Ranzato, M.3    Yang, K.4
  • 22
    • 80052119994 scopus 로고    scopus 로고
    • An architecture for parallel topic models
    • A. Smola and S. Narayanamurthy. An architecture for parallel topic models. Proc. VLDB Endow., 3(1-2):703-710, 2010.
    • (2010) Proc. VLDB Endow , vol.3 , Issue.1-2 , pp. 703-710
    • Smola, A.1    Narayanamurthy, S.2
  • 25
    • 85014523954 scopus 로고    scopus 로고
    • Deep learning with elastic averaging SGD
    • abs/1412.6651
    • S. Zhang, A. Choromanska, and Y. LeCun. Deep learning with elastic averaging SGD. CoRR, abs/1412.6651, 2014.
    • (2014) CoRR
    • Zhang, S.1    Choromanska, A.2    LeCun, Y.3
  • 26
    • 84905865959 scopus 로고    scopus 로고
    • Mariana: Tencent deep learning platform and its applications
    • Y. Zou, X. Jin, Y. Li, Z. Guo, E. Wang, and B. Xiao. Mariana: Tencent deep learning platform and its applications. Proc. VLDB Endow., 7(13):1772-1777, 2014.
    • (2014) Proc. VLDB Endow , vol.7 , Issue.13 , pp. 1772-1777
    • Zou, Y.1    Jin, X.2    Li, Y.3    Guo, Z.4    Wang, E.5    Xiao, B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.