-
1
-
-
80051616844
-
Large vocabulary continuous speech recognition with context-dependent DBNHMMs
-
G.E. Dahl, D. Yu, L. Deng, and A. Acero, "Large vocabulary continuous speech recognition with context-dependent DBNHMMs," in ICASSP, 2011
-
(2011)
ICASSP
-
-
Dahl, G.E.1
Yu, D.2
Deng, L.3
Acero, A.4
-
2
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition
-
November
-
G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kings-bury, "Deep neural networks for acoustic modeling in speech recognition," IEEE Signal Processing Magazine, vol. 29, no. 6, November 2012
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, Issue.6
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.10
Kings-Bury, B.11
-
3
-
-
0001699291
-
Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters
-
J.S. Bridle, "Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters," in NIPS, 1990, vol. 2, pp. 211-217
-
(1990)
NIPS
, vol.2
, pp. 211-217
-
-
Bridle, J.S.1
-
4
-
-
0001857994
-
Efficient backprop
-
G. Orr and Muller K., Eds. Springer
-
T. LeCun, L. Bottou, G. Orr, and K. Muller, "Efficient backprop," in Neural Networks: Tricks of the trade, G. Orr and Muller K., Eds. Springer, 1998
-
(1998)
Neural Networks: Tricks of the Trade
-
-
Lecun, T.1
Bottou, L.2
Orr, G.3
Muller, K.4
-
5
-
-
84878379108
-
Scalable minimum bayes risk training of deep neural network acoustic models using distributed hessian-free optimization
-
B. Kingsbury, T.N. Sainath, and H. Soltau, "Scalable minimum bayes risk training of deep neural network acoustic models using distributed hessian-free optimization," in Interspeech, 2012
-
(2012)
Interspeech
-
-
Kingsbury, B.1
Sainath, T.N.2
Soltau, H.3
-
7
-
-
84858972572
-
Making deep belief networks effective for large vocabulary continuous speech recognition
-
December
-
T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. Novak, and A. Mohamed, "Making deep belief networks effective for large vocabulary continuous speech recognition," in ASRU, December 2011
-
(2011)
ASRU
-
-
Sainath, T.N.1
Kingsbury, B.2
Ramabhadran, B.3
Fousek, P.4
Novak, P.5
Mohamed, A.6
-
8
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M.'A. Ranzato, A. Senior, P. Tucker, K. Yang, and A.Y. Ng, "Large scale distributed deep networks," in NIPS, 2012
-
(2012)
NIPS
-
-
Dean, J.1
Corrado, G.S.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.V.6
Mao, M.Z.7
Ranzato, M.'.A.8
Senior, A.9
Tucker, P.10
Yang, K.11
Ng, A.Y.12
-
9
-
-
84865801985
-
Conversational speech transcription using context-dependent deep neural networks
-
F. Seide, G. Li, and D. Yu, "Conversational speech transcription using context-dependent deep neural networks," in Interspeech, 2011
-
(2011)
Interspeech
-
-
Seide, F.1
Li, G.2
Yu, D.3
-
10
-
-
84878539964
-
Application of pretrained deep neural networks to large vocabulary speech recognition
-
N. Jaitly, P. Nguyen, A. W. Senior, and V. Vanhoucke, "Application of pretrained deep neural networks to large vocabulary speech recognition," in Interspeech, 2012
-
(2012)
Interspeech
-
-
Jaitly, N.1
Nguyen, P.2
Senior, A.W.3
Vanhoucke, V.4
-
13
-
-
80051654263
-
Deep belief networks using discriminative features for phone recognition
-
May
-
A. Mohamed, T. N. Sainath, G. Dahl, B. Ramabhadran, G. Hinton, and M. Picheny, "Deep belief networks using discriminative features for phone recognition," in ICASSP, May 2011
-
(2011)
ICASSP
-
-
Mohamed, A.1
Sainath, T.N.2
Dahl, G.3
Ramabhadran, B.4
Hinton, G.5
Picheny, M.6
-
14
-
-
84904136037
-
Large-scale machine learning with stochastic gradient descent
-
Yves Lechevallier and Gilbert Saporta, Eds., Paris, France, August Springer
-
Leon Bottou, "Large-scale machine learning with stochastic gradient descent," in Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT'2010), Yves Lechevallier and Gilbert Saporta, Eds., Paris, France, August 2010, pp. 177-187, Springer
-
(2010)
Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT'2010)
, pp. 177-187
-
-
Bottou, L.1
-
16
-
-
85009890950
-
Connectionist probability estimation in the decipher speech recognition system
-
S. Renals, N. Morgan, M. Cohen, and H. Franco, "Connectionist probability estimation in the decipher speech recognition system," in ICASSP, 1992, pp. 601-604
-
(1992)
ICASSP
, pp. 601-604
-
-
Renals, S.1
Morgan, N.2
Cohen, M.3
Franco, H.4
-
17
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization," Journal of Machine Learning Research, vol. 12, pp. 2121-2159, 2010
-
(2010)
Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
18
-
-
84943274699
-
A direct adaptive method for faster backpropagation learning: The RPROP algorithm
-
IEEE
-
M. Riedmiller and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," in IEEE International Conference on Neural Networks. 1993, pp. 586-591, IEEE
-
(1993)
IEEE International Conference on Neural Networks.
, pp. 586-591
-
-
Riedmiller, M.1
Braun, H.2
-
20
-
-
33947664052
-
Training algorithms for hidden conditional random fields
-
M. Mahajan, A. Gunawardana, and A. Acero, "Training algorithms for hidden conditional random fields," in ICASSP, 2006, pp. 273-276
-
(2006)
ICASSP
, pp. 273-276
-
-
Mahajan, M.1
Gunawardana, A.2
Acero, A.3
-
23
-
-
0026899240
-
Acceleration of stochastic approximation by averaging
-
B.T. Polyak and A.B. Juditsky, "Acceleration of stochastic approximation by averaging," Automation and Remote Control, vol. 30, no. 4, pp. 838-855, 1992.
-
(1992)
Automation and Remote Control
, vol.30
, Issue.4
, pp. 838-855
-
-
Polyak, B.T.1
Juditsky, A.B.2
|