메뉴 건너뛰기




Volumn 7, Issue , 2017, Pages

A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02

Author keywords

[No Author keywords available]

Indexed keywords

2,3-BUTYLENE GLYCOL; ACETOIN; BACTERIAL PROTEIN; BUTANEDIOL; GLUCOSE; GLUCOSE 6 PHOSPHATE DEHYDROGENASE; N ACETYLGLUCOSAMINYLTRANSFERASE; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; POLY(GAMMA-GLUTAMIC ACID); POLYGLUTAMIC ACID;

EID: 85013777700     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep43404     Document Type: Article
Times cited : (78)

References (36)
  • 1
    • 33745289074 scopus 로고    scopus 로고
    • Poly-gamma-glutamate in bacteria
    • Candela, T. & Fouet, A. Poly-gamma-glutamate in bacteria. Mol Microbiol 60, 1091-1098, doi: 10.1111/j.1365-2958.2006.05179.x (2006).
    • (2006) Mol Microbiol , vol.60 , pp. 1091-1098
    • Candela, T.1    Fouet, A.2
  • 2
    • 84896709782 scopus 로고    scopus 로고
    • In vitro evaluation of new functional properties of poly-gamma-glutamic acid produced by Bacillus subtilis D7
    • Lee, N. R. et al. In vitro evaluation of new functional properties of poly-gamma-glutamic acid produced by Bacillus subtilis D7. Saudi J Biol Sci 21, 153-158, doi: 10.1016/j.sjbs.2013.09.004 (2014).
    • (2014) Saudi J Biol Sci , vol.21 , pp. 153-158
    • Lee, N.R.1
  • 3
    • 84920885390 scopus 로고    scopus 로고
    • Poly-gamma-glutamic acid: Production, properties and applications
    • Ogunleye, A. et al. Poly-gamma-glutamic acid: production, properties and applications. Microbiology 161, 1-17, doi: 10.1099/ mic.0.081448-0 (2015).
    • (2015) Microbiology , vol.161 , pp. 1-17
    • Ogunleye, A.1
  • 4
    • 84978900502 scopus 로고    scopus 로고
    • Microbial synthesis of poly-gamma-glutamic acid: Current progress, challenges, and future perspectives
    • Luo, Z. et al. Microbial synthesis of poly-gamma-glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels 9, 134, doi: 10.1186/s13068-016-0537-7 (2016).
    • (2016) Biotechnol Biofuels , vol.9 , pp. 134
    • Luo, Z.1
  • 5
    • 77949291926 scopus 로고    scopus 로고
    • Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-gamma-glutamic acid
    • Wei, X., Ji, Z. & Chen, S. Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-gamma-glutamic acid. Appl Biochem Biotechnol 160, 1332-1340, doi: 10.1007/s12010-009-8681-1 (2010).
    • (2010) Appl Biochem Biotechnol , vol.160 , pp. 1332-1340
    • Wei, X.1    Ji, Z.2    Chen, S.3
  • 6
    • 84919838688 scopus 로고    scopus 로고
    • Physiological and metabolic analysis of nitrate reduction on poly-gamma-glutamic acid synthesis in Bacillus licheniformis WX-02
    • Li, X. et al. Physiological and metabolic analysis of nitrate reduction on poly-gamma-glutamic acid synthesis in Bacillus licheniformis WX-02. Arch Microbiol 196, 791-799, doi: 10.1007/s00203-014-1014-y (2014).
    • (2014) Arch Microbiol , vol.196 , pp. 791-799
    • Li, X.1
  • 7
    • 84924429820 scopus 로고    scopus 로고
    • A new strategy for enhancement of poly-γ -glutamic acid production by multiple physicochemical stresses in Bacillus licheniformis WX-02
    • Wei, X., Tian, G., Ji, Z. & Chen, S. A new strategy for enhancement of poly-γ -glutamic acid production by multiple physicochemical stresses in Bacillus licheniformis WX-02. J Chem Technol Biotechnol 90, 709-713, doi: 10.1128/JB.186.11.3399-3407.2004 (2015).
    • (2015) J Chem Technol Biotechnol , vol.90 , pp. 709-713
    • Wei, X.1    Tian, G.2    Ji, Z.3    Chen, S.4
  • 8
    • 85009945067 scopus 로고    scopus 로고
    • Enhancement of poly-γ -glutamic acid production by alkaline pH stress treatment in Bacillus licheniformis WX-02
    • Wang, J., Yuan, H., Wei, X., Chen, J. & Chen, S. Enhancement of poly-γ -glutamic acid production by alkaline pH stress treatment in Bacillus licheniformis WX-02. J Chem Technol Biotechnol 121, 1444-1447 (2015).
    • (2015) J Chem Technol Biotechnol , vol.121 , pp. 1444-1447
    • Wang, J.1    Yuan, H.2    Wei, X.3    Chen, J.4    Chen, S.5
  • 9
    • 85073125969 scopus 로고    scopus 로고
    • Enhanced expression of pgdS, gene for high production of poly-γ -glutamic aicd with lower molecular weight in Bacillus licheniformis WX-02
    • Tian, G. et al. Enhanced expression of pgdS, gene for high production of poly-γ -glutamic aicd with lower molecular weight in Bacillus licheniformis WX-02. J Chem Technol Biotechnol 89, 1825-1832, doi: 10.1038/srep01377 (2013).
    • (2013) J Chem Technol Biotechnol , vol.89 , pp. 1825-1832
    • Tian, G.1
  • 10
    • 80051469978 scopus 로고    scopus 로고
    • Expression of glr gene encoding glutamate racemase in Bacillus licheniformis WX-02 and its regulatory effects on synthesis of poly-gamma-glutamic acid
    • Jiang, F. et al. Expression of glr gene encoding glutamate racemase in Bacillus licheniformis WX-02 and its regulatory effects on synthesis of poly-gamma-glutamic acid. Biotechnol Lett 33, 1837-1840, doi: 10.1007/s10529-011-0631-7 (2011).
    • (2011) Biotechnol Lett , vol.33 , pp. 1837-1840
    • Jiang, F.1
  • 11
    • 84863594395 scopus 로고    scopus 로고
    • Control of glutamate homeostasis in Bacillus subtilis: A complex interplay between ammonium assimilation, glutamate biosynthesis and degradation
    • Gunka, K. & Commichau, F. M. Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Mol Microbiol 85, 213-224, doi: 10.1111/j.1365-2958.2012.08105.x (2012).
    • (2012) Mol Microbiol , vol.85 , pp. 213-224
    • Gunka, K.1    Commichau, F.M.2
  • 12
    • 85009962494 scopus 로고    scopus 로고
    • Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for Poly-γ-glutamic acid production
    • Tian, G., Wang, Q., Wei, X., Ma, X. & Chen, S. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: enzymatic properties and specific functions in glutamic acid synthesis for Poly-γ -glutamic acid production. Enzyme Microb Technol 99, 9-15, doi: 10.1016/j.enzmictec.2017.01.002 (2017).
    • (2017) Enzyme Microb Technol , vol.99 , pp. 9-15
    • Tian, G.1    Wang, Q.2    Wei, X.3    Ma, X.4    Chen, S.5
  • 13
    • 70349671435 scopus 로고    scopus 로고
    • Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in gamma-poly-glutamic acid synthesis
    • Ohsawa, T., Tsukahara, K. & Ogura, M. Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in gamma-poly-glutamic acid synthesis. Biosci Biotechnol Biochem 73, 2096-2102, doi: 10.1271/bbb.90341 (2009).
    • (2009) Biosci Biotechnol Biochem , vol.73 , pp. 2096-2102
    • Ohsawa, T.1    Tsukahara, K.2    Ogura, M.3
  • 14
    • 84943570374 scopus 로고    scopus 로고
    • Improved poly-gamma-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering
    • Feng, J. et al. Improved poly-gamma-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Metab Eng 32, 106-115, doi: 10.1016/j.ymben.2015.09.011 (2015).
    • (2015) Metab Eng , vol.32 , pp. 106-115
    • Feng, J.1
  • 15
    • 84925491469 scopus 로고    scopus 로고
    • Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. Amyloliquefaciens LL3
    • Zhang, W. et al. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3. J Ind Microbiol Biotechnol 42, 297-305, doi: 10.1007/s10295-014-1563-8 (2015).
    • (2015) J Ind Microbiol Biotechnol , vol.42 , pp. 297-305
    • Zhang, W.1
  • 16
    • 84878412567 scopus 로고    scopus 로고
    • Knockout of pgdS and ggt genes improves gamma-PGA yield in B. Subtilis
    • Scoffone, V. et al. Knockout of pgdS and ggt genes improves gamma-PGA yield in B. subtilis. Biotechnol Bioeng 110, 2006-2012, doi: 10.1002/bit.24846 (2013).
    • (2013) Biotechnol Bioeng , vol.110 , pp. 2006-2012
    • Scoffone, V.1
  • 17
    • 76749151341 scopus 로고    scopus 로고
    • Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering
    • Chemler, J. A., Fowler, Z. L., McHugh, K. P. & Koffas, M. A. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng 12, 96-104, doi: 10.1016/j.ymben.2009.07.003 (2010).
    • (2010) Metab Eng , vol.12 , pp. 96-104
    • Chemler, J.A.1    Fowler, Z.L.2    McHugh, K.P.3    Koffas, M.A.4
  • 18
    • 0141942560 scopus 로고    scopus 로고
    • Metabolic engineering of pentose phosphate pathway in Ralstoniaeutropha for enhanced biosynthesis of poly-beta-hydroxybutyrate
    • Lee, J. N., Shin, H. D. & Lee, Y. H. Metabolic engineering of pentose phosphate pathway in Ralstoniaeutropha for enhanced biosynthesis of poly-beta-hydroxybutyrate. Biotechnol Prog 19, 1444-1449, doi: 10.1021/bp034060v (2003).
    • (2003) Biotechnol Prog , vol.19 , pp. 1444-1449
    • Lee, J.N.1    Shin, H.D.2    Lee, Y.H.3
  • 19
    • 57249113720 scopus 로고    scopus 로고
    • ATP in current biotechnology: Regulation, applications and perspectives
    • Zhou, J., Liu, L., Shi, Z., Du, G. & Chen, J. ATP in current biotechnology: regulation, applications and perspectives. Biotechnol Adv 27, 94-101, doi: 10.1016/j.biotechadv.2008.10.005 (2009).
    • (2009) Biotechnol Adv , vol.27 , pp. 94-101
    • Zhou, J.1    Liu, L.2    Shi, Z.3    Du, G.4    Chen, J.5
  • 20
    • 84876674407 scopus 로고    scopus 로고
    • Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation
    • Lee, W. H., Kim, M. D., Jin, Y. S. & Seo, J. H. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl Microbiol Biotechnol 97, 2761-2772, doi: 10.1007/s00253-013-4750-z (2013).
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 2761-2772
    • Lee, W.H.1    Kim, M.D.2    Jin, Y.S.3    Seo, J.H.4
  • 21
    • 84955283668 scopus 로고    scopus 로고
    • Effect of Polyhydroxybutyrate (PHB) storage on L-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation
    • Xu, M. et al. Effect of Polyhydroxybutyrate (PHB) storage on L-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation. Microb Cell Fact 15, 15, doi: 10.1186/s12934-016-0414-x (2016).
    • (2016) Microb Cell Fact , vol.15 , pp. 15
    • Xu, M.1
  • 22
    • 33646045867 scopus 로고    scopus 로고
    • Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli
    • Sanchez, A. M., Andrews, J., Hussein, I., Bennett, G. N. & San, K. Y. Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol Prog 22, 420-425, doi: 10.1021/bp050375u (2006).
    • (2006) Biotechnol Prog , vol.22 , pp. 420-425
    • Sanchez, A.M.1    Andrews, J.2    Hussein, I.3    Bennett, G.N.4    San, K.Y.5
  • 23
    • 0036305048 scopus 로고    scopus 로고
    • Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. Coli transformant harboring a cloned phbCAB operon
    • Lim, S. J., Jung, Y. M., Shin, H. D. & Lee, Y. H. Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J Biosci Bioeng 93, 543-549 (2002).
    • (2002) J Biosci Bioeng , vol.93 , pp. 543-549
    • Lim, S.J.1    Jung, Y.M.2    Shin, H.D.3    Lee, Y.H.4
  • 24
    • 84991249577 scopus 로고    scopus 로고
    • Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using δ pfk mutants
    • Hollinshead, W. D. et al. Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using δ pfk mutants. Biotechnol Biofuels 9, 212, doi: 10.1186/s13068-016-0630-y (2016).
    • (2016) Biotechnol Biofuels , vol.9 , pp. 212
    • Hollinshead, W.D.1
  • 25
    • 84867165876 scopus 로고    scopus 로고
    • Regulation of the anaerobic metabolism in Bacillus subtilis
    • Hartig, E. & Jahn, D. Regulation of the anaerobic metabolism in Bacillus subtilis. Adv Microb Phys 61, 195-216, doi: 10.1016/B978-0-12-394423-8.00005-6 (2012).
    • (2012) Adv Microb Phys , vol.61 , pp. 195-216
    • Hartig, E.1    Jahn, D.2
  • 26
    • 84906779771 scopus 로고    scopus 로고
    • NADH plays the vital role for chiral pure D-(- )-2, 3-butanediol production in Bacillus subtilis under limited oxygen conditions
    • Fu, J. et al. NADH plays the vital role for chiral pure D-(- )-2, 3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng 111, 2126-2131, doi: 10.1002/bit.25265 (2014).
    • (2014) Biotechnol Bioeng , vol.111 , pp. 2126-2131
    • Fu, J.1
  • 27
    • 84966421127 scopus 로고    scopus 로고
    • Metabolic engineering of Bacillus subtilis for chiral pure meso-2, 3-butanediol production
    • Fu, J. et al. Metabolic engineering of Bacillus subtilis for chiral pure meso-2, 3-butanediol production. Biotechnol Biofuels 9, 90, doi: 10.1186/s13068-016-0502-5 (2016).
    • (2016) Biotechnol Biofuels , vol.9 , pp. 90
    • Fu, J.1
  • 28
    • 84982136128 scopus 로고    scopus 로고
    • High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase
    • Cai, D. et al. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase. J Appl Microbiol 121, 704-712, doi: 10.1111/jam.13175 (2016).
    • (2016) J Appl Microbiol , vol.121 , pp. 704-712
    • Cai, D.1
  • 29
    • 0032972099 scopus 로고    scopus 로고
    • High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis
    • Xue, G. P., Johnson, J. S. & Dalrymple, B. P. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Meth 34, 183-191 (1999).
    • (1999) J Microbiol Meth , vol.34 , pp. 183-191
    • Xue, G.P.1    Johnson, J.S.2    Dalrymple, B.P.3
  • 30
    • 84971572021 scopus 로고    scopus 로고
    • Engineering Bacillus licheniformis for the production of meso-2, 3-butanediol
    • Qiu, Y. et al. Engineering Bacillus licheniformis for the production of meso-2, 3-butanediol. Biotechnol Biofuels 9, 117, doi: 10.1186/ s13068-016-0522-1 (2016).
    • (2016) Biotechnol Biofuels , vol.9 , pp. 117
    • Qiu, Y.1
  • 31
    • 84893016274 scopus 로고    scopus 로고
    • Deletion of meso-2, 3-butanediol dehydrogenase gene budC for enhanced D-2, 3-butanediol production in Bacillus licheniformis
    • Qi, G. et al. Deletion of meso-2, 3-butanediol dehydrogenase gene budC for enhanced D-2, 3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels 7, 16, doi: 10.1186/1754-6834-7-16 (2014).
    • (2014) Biotechnol Biofuels , vol.7 , pp. 16
    • Qi, G.1
  • 32
    • 84920253134 scopus 로고    scopus 로고
    • Improvement of lichenysin production in Bacillus licheniformis by replacement of native promoter of lichenysin biosynthesis operon and medium optimization
    • Qiu, Y., Xiao, F., Wei, X., Wen, Z. & Chen, S. Improvement of lichenysin production in Bacillus licheniformis by replacement of native promoter of lichenysin biosynthesis operon and medium optimization. Appl Microbiol Biotechnol 98, 8895-8903, doi: 10.1007/ s00253-014-5978-y (2014).
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 8895-8903
    • Qiu, Y.1    Xiao, F.2    Wei, X.3    Wen, Z.4    Chen, S.5
  • 33
    • 78651516949 scopus 로고    scopus 로고
    • Enhancement of riboflavin production with Bacillus subtilis by expression and sitedirected mutagenesis of zwf and gnd gene from Corynebacterium glutamicum
    • Wang, Z., Chen, T., Ma, X., Shen, Z. & Zhao, X. Enhancement of riboflavin production with Bacillus subtilis by expression and sitedirected mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresour Technol 102, 3934-3940, doi: 10.1016/j. biortech.2010.11.120 (2011).
    • (2011) Bioresour Technol , vol.102 , pp. 3934-3940
    • Wang, Z.1    Chen, T.2    Ma, X.3    Shen, Z.4    Zhao, X.5
  • 34
    • 33847390672 scopus 로고    scopus 로고
    • A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during Arabidopsis rosette development
    • Queval, G. & Noctor, G. A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during Arabidopsis rosette development. Anal Biochem 363, 58-69, doi: 10.1016/j.ab.2007.01.005 (2007).
    • (2007) Anal Biochem , vol.363 , pp. 58-69
    • Queval, G.1    Noctor, G.2
  • 35
    • 79957577939 scopus 로고    scopus 로고
    • Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway
    • Tang, Z. et al. Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway. Enzyme Microb Technol 49, 17-24, doi: 10.1016/j.enzmictec.2011.04.002 (2011).
    • (2011) Enzyme Microb Technol , vol.49 , pp. 17-24
    • Tang, Z.1
  • 36
    • 84925501860 scopus 로고    scopus 로고
    • Efficient expression of nattokinase in Bacillus licheniformis: Host strain construction and signal peptide optimization
    • Wei, X. et al. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization. J Ind Microbiol Biotechnol 42, 287-295, doi: 10.1007/s10295-014-1559-4 (2015).
    • (2015) J Ind Microbiol Biotechnol , vol.42 , pp. 287-295
    • Wei, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.