메뉴 건너뛰기




Volumn 146, Issue , 2017, Pages 270-285

Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm

Author keywords

Cuckoo search algorithm; Electric load forecasting; Forecasting validity; Singular spectrum analysis; Support vector machine

Indexed keywords

DATA HANDLING; ELECTRIC POWER PLANT LOADS; ELECTRIC POWER SYSTEM PLANNING; ELECTRIC POWER SYSTEMS; FORECASTING; LEARNING ALGORITHMS; OPTIMIZATION; SIGNAL PROCESSING; SPECTRUM ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 85013197196     PISSN: 03787796     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.epsr.2017.01.035     Document Type: Article
Times cited : (246)

References (50)
  • 1
    • 0003691602 scopus 로고
    • Time series: theory and methods
    • Springer Berlin
    • [1] Brockwell, P.J., Davis, R.A., Time series: theory and methods. 1991, Springer, Berlin.
    • (1991)
    • Brockwell, P.J.1    Davis, R.A.2
  • 2
    • 13844311476 scopus 로고    scopus 로고
    • Short-term load forecasting for the holidays using fuzzy linear regression method
    • [2] Song, K.-B., Baek, Y.-S., Hong, D.H., Jang, G., Short-term load forecasting for the holidays using fuzzy linear regression method. IEEE Trans. Power Syst. 20:1 (2005), 96–101.
    • (2005) IEEE Trans. Power Syst. , vol.20 , Issue.1 , pp. 96-101
    • Song, K.-B.1    Baek, Y.-S.2    Hong, D.H.3    Jang, G.4
  • 3
    • 84893442440 scopus 로고    scopus 로고
    • Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted leastsquares regression
    • [3] Guo, Y., Nazarian, E., Ko, J., Rajurkar, K., Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted leastsquares regression. Energy Convers. Manage. 80 (2014), 46–53.
    • (2014) Energy Convers. Manage. , vol.80 , pp. 46-53
    • Guo, Y.1    Nazarian, E.2    Ko, J.3    Rajurkar, K.4
  • 4
    • 0003610420 scopus 로고    scopus 로고
    • Time series analysis and its applications
    • Springer Berlin
    • [4] Shumway, R.H., Stoffer, D.S., Time series analysis and its applications. 1999, Springer, Berlin.
    • (1999)
    • Shumway, R.H.1    Stoffer, D.S.2
  • 5
    • 84865411090 scopus 로고    scopus 로고
    • Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting
    • [5] Wang, J.Z., Jia, R.L., Zhao, W.G., Wu, J., Dong, Y., Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting. Chaos Soliton. Fract. 45 (2012), 1277–1287.
    • (2012) Chaos Soliton. Fract. , vol.45 , pp. 1277-1287
    • Wang, J.Z.1    Jia, R.L.2    Zhao, W.G.3    Wu, J.4    Dong, Y.5
  • 6
    • 77949261436 scopus 로고    scopus 로고
    • Combined modeling for electric load forecasting with adaptive particles warm optimization
    • [6] Wang, J.Z., Zhu, S.L., Zhang, W.Y., Lu, H.Y., Combined modeling for electric load forecasting with adaptive particles warm optimization. Energy 35 (2010), 1671–1678.
    • (2010) Energy , vol.35 , pp. 1671-1678
    • Wang, J.Z.1    Zhu, S.L.2    Zhang, W.Y.3    Lu, H.Y.4
  • 7
    • 84905841702 scopus 로고    scopus 로고
    • Short term load forecasting using wavelet transform combined with Holt-Winters and weighted nearest neighbor models
    • [7] Sudheer, G., Suseelatha, A., Short term load forecasting using wavelet transform combined with Holt-Winters and weighted nearest neighbor models. Elect. Power Energy Syst. 64 (2015), 340–346.
    • (2015) Elect. Power Energy Syst. , vol.64 , pp. 340-346
    • Sudheer, G.1    Suseelatha, A.2
  • 8
    • 0037505508 scopus 로고    scopus 로고
    • Short-term load forecasting via ARMA model identification including non-Gaussian process considerations
    • [8] Huang, S.J., Shih, K.R., Short-term load forecasting via ARMA model identification including non-Gaussian process considerations. IEEE Trans. Power Syst. 18:2 (2003), 673–679.
    • (2003) IEEE Trans. Power Syst. , vol.18 , Issue.2 , pp. 673-679
    • Huang, S.J.1    Shih, K.R.2
  • 9
    • 77249162115 scopus 로고    scopus 로고
    • Forecasting demand of commodities after natural disasters
    • [9] Xu, X.Y., Qi, Y.Q., Hua, Z.S., Forecasting demand of commodities after natural disasters. Expert Syst. Appl. 37 (2010), 4313–4317.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 4313-4317
    • Xu, X.Y.1    Qi, Y.Q.2    Hua, Z.S.3
  • 10
    • 0029368511 scopus 로고
    • Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting
    • [10] Chen, J.F., Wang, W.M., Huang, C.M., Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting. Electric Power Syst. Res. 34:3 (1995), 187–196.
    • (1995) Electric Power Syst. Res. , vol.34 , Issue.3 , pp. 187-196
    • Chen, J.F.1    Wang, W.M.2    Huang, C.M.3
  • 11
    • 84910050420 scopus 로고    scopus 로고
    • Seasonal climate forecasts for medium-term electricity demand forecasting
    • [11] Felice, M.D., Alessandri, A., Catalano, F., Seasonal climate forecasts for medium-term electricity demand forecasting. Appl. Energy 137 (2015), 435–444.
    • (2015) Appl. Energy , vol.137 , pp. 435-444
    • Felice, M.D.1    Alessandri, A.2    Catalano, F.3
  • 12
    • 33746839289 scopus 로고    scopus 로고
    • A trigonometric Grey prediction approach to forecasting electricity demand
    • [12] Zhou, P., Ang, B.W., Poh, K.L., A trigonometric Grey prediction approach to forecasting electricity demand. Energy 31:14 (2006), 2839–2847.
    • (2006) Energy , vol.31 , Issue.14 , pp. 2839-2847
    • Zhou, P.1    Ang, B.W.2    Poh, K.L.3
  • 13
    • 34250208764 scopus 로고    scopus 로고
    • Grey prediction with rolling mechanism for electricity demand forecasting of Turkey
    • [13] Akay, D., Atak, M., Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 32:9 (2007), 1670–1675.
    • (2007) Energy , vol.32 , Issue.9 , pp. 1670-1675
    • Akay, D.1    Atak, M.2
  • 14
    • 0142228351 scopus 로고    scopus 로고
    • Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model
    • [14] Al-Hamadi, H.M., Soliman, S.A., Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model. Electr. Power Syst. Res. 68:1 (2004), 47–59.
    • (2004) Electr. Power Syst. Res. , vol.68 , Issue.1 , pp. 47-59
    • Al-Hamadi, H.M.1    Soliman, S.A.2
  • 15
    • 36749004284 scopus 로고    scopus 로고
    • Multistage artificial neural network short-term load forecasting engine with front-end weather forecast
    • [15] Methaprayoon, K., Lee, W.J., Rasmiddatta, S., Liao, J.R., Ross, R.J., Multistage artificial neural network short-term load forecasting engine with front-end weather forecast. IEEE Trans. Ind. Appl. 43:6 (2007), 1410–1416.
    • (2007) IEEE Trans. Ind. Appl. , vol.43 , Issue.6 , pp. 1410-1416
    • Methaprayoon, K.1    Lee, W.J.2    Rasmiddatta, S.3    Liao, J.R.4    Ross, R.J.5
  • 16
    • 0035425750 scopus 로고    scopus 로고
    • Deterministic annealing clustering for ANN-based short term load forecasting
    • [16] Mori, H., Yuihara, A., Deterministic annealing clustering for ANN-based short term load forecasting. IEEE Trans. Power Syst. 16:3 (2001), 545–551.
    • (2001) IEEE Trans. Power Syst. , vol.16 , Issue.3 , pp. 545-551
    • Mori, H.1    Yuihara, A.2
  • 18
    • 35348927477 scopus 로고    scopus 로고
    • Identification of fuzzy model for short-term load forecasting using evolutionary programming and orthogonal least squares
    • [18] Ye, B., Yan, N.N., Guo, C.X., Cao, Y.J., Identification of fuzzy model for short-term load forecasting using evolutionary programming and orthogonal least squares. IEEE Power Eng. Soc. Gen. Meet., 2006.
    • (2006) IEEE Power Eng. Soc. Gen. Meet.
    • Ye, B.1    Yan, N.N.2    Guo, C.X.3    Cao, Y.J.4
  • 20
    • 0009341210 scopus 로고    scopus 로고
    • Automatic fuzzy model identification for short-term load forecast
    • [20] Wu, H.C., Lu, C., Automatic fuzzy model identification for short-term load forecast. IEE Proc.-Gen. Transm. Distrib. 146:5 (1999), 477–482.
    • (1999) IEE Proc.-Gen. Transm. Distrib. , vol.146 , Issue.5 , pp. 477-482
    • Wu, H.C.1    Lu, C.2
  • 21
    • 0027590291 scopus 로고
    • A generalized knowledge-based short-term load- forecasting technique
    • [21] Rahman, S., Hazim, O., A generalized knowledge-based short-term load- forecasting technique. IEEE Trans. Power Syst. 8 (1993), 508–514.
    • (1993) IEEE Trans. Power Syst. , vol.8 , pp. 508-514
    • Rahman, S.1    Hazim, O.2
  • 22
    • 0024001840 scopus 로고    scopus 로고
    • An expert system based algorithm for short-term load forecasting
    • [22] Rahman, S., Bhatnagar, R., An expert system based algorithm for short-term load forecasting. IEEE Trans. Power Syst. 3:2 (1998), 392–399.
    • (1998) IEEE Trans. Power Syst. , vol.3 , Issue.2 , pp. 392-399
    • Rahman, S.1    Bhatnagar, R.2
  • 23
    • 0032592947 scopus 로고    scopus 로고
    • Parallel neural network-fuzzy expert system strategy for short-term load forecasting: system implementation and performance evaluation
    • [23] Srinivasan, D., Tan, S.S., Cheng, C.S., Chan, E.K., Parallel neural network-fuzzy expert system strategy for short-term load forecasting: system implementation and performance evaluation. IEEE Trans. Power Syst. 14:3 (1999), 1100–1106.
    • (1999) IEEE Trans. Power Syst. , vol.14 , Issue.3 , pp. 1100-1106
    • Srinivasan, D.1    Tan, S.S.2    Cheng, C.S.3    Chan, E.K.4
  • 24
    • 84870024579 scopus 로고    scopus 로고
    • A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm
    • [24] Li, H.Z., Guo, S., Li, C.J., Sun, J.Q., A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowl. Based Syst. 37 (2013), 378–387.
    • (2013) Knowl. Based Syst. , vol.37 , pp. 378-387
    • Li, H.Z.1    Guo, S.2    Li, C.J.3    Sun, J.Q.4
  • 25
    • 55749112476 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
    • [25] Hong, W.C., Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Convers. Manage. 50:1 (2009), 105–117.
    • (2009) Energy Convers. Manage. , vol.50 , Issue.1 , pp. 105-117
    • Hong, W.C.1
  • 26
    • 39149121480 scopus 로고    scopus 로고
    • Hybridization of intelligent techniques and ARIMA models for time series prediction
    • [26] Valenzuela, O., Rojas, I., Rojas, F., Pomares, H., Herrera, L., Guillen, A., et al. Hybridization of intelligent techniques and ARIMA models for time series prediction. Fuzzy Sets Syst. 159:7 (2008), 821–845.
    • (2008) Fuzzy Sets Syst. , vol.159 , Issue.7 , pp. 821-845
    • Valenzuela, O.1    Rojas, I.2    Rojas, F.3    Pomares, H.4    Herrera, L.5    Guillen, A.6
  • 27
    • 77955322938 scopus 로고    scopus 로고
    • Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling
    • [27] Che, J., Wang, J., Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling. Energy Convers. Manage. 51:10 (2010), 1911–1917.
    • (2010) Energy Convers. Manage. , vol.51 , Issue.10 , pp. 1911-1917
    • Che, J.1    Wang, J.2
  • 28
    • 84901800377 scopus 로고    scopus 로고
    • A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids
    • [28] Liu, N., Tang, Q.F., Zhang, J.H., Fan, W., Liu, J., A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids. Appl. Energy 129 (2014), 336–345.
    • (2014) Appl. Energy , vol.129 , pp. 336-345
    • Liu, N.1    Tang, Q.F.2    Zhang, J.H.3    Fan, W.4    Liu, J.5
  • 29
    • 84928213604 scopus 로고    scopus 로고
    • A hybrid application algorithm based on the support vector machine and artificial intelligence: An example of electric load forecasting
    • [29] Chen, Y., Yang, Y., Liu, C., Li, C., Li, L., A hybrid application algorithm based on the support vector machine and artificial intelligence: An example of electric load forecasting. Appl. Math. Model. 39 (2015), 2617–2632.
    • (2015) Appl. Math. Model. , vol.39 , pp. 2617-2632
    • Chen, Y.1    Yang, Y.2    Liu, C.3    Li, C.4    Li, L.5
  • 30
    • 84920195266 scopus 로고    scopus 로고
    • Short-term load forecasting using a kernel-based support vector regression combination model
    • [30] Che, J., Wang, J., Short-term load forecasting using a kernel-based support vector regression combination model. Appl. Energy 132 (2014), 602–609.
    • (2014) Appl. Energy , vol.132 , pp. 602-609
    • Che, J.1    Wang, J.2
  • 31
    • 84941236999 scopus 로고    scopus 로고
    • A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm
    • [31] Kisi, O., Shiri, J., Karimi, S., Shamshirband, S., Motamedi, S., Petković, D., Hashimd, R., A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Appl. Math. Comput. 270 (2015), 731–743.
    • (2015) Appl. Math. Comput. , vol.270 , pp. 731-743
    • Kisi, O.1    Shiri, J.2    Karimi, S.3    Shamshirband, S.4    Motamedi, S.5    Petković, D.6    Hashimd, R.7
  • 32
    • 84955356953 scopus 로고    scopus 로고
    • A new approach for selecting the number of the eigenvalues in singular spectrum analysis
    • [32] Nader Alharbi and Hossein Hassani. A new approach for selecting the number of the eigenvalues in singular spectrum analysis, Journal of the Franklin Institute. http://dx.doi.org/10.1016/j.jfranklin.2015.10.015.
    • Journal of the Franklin Institute
    • Alharbi, N.1    Hassani, H.2
  • 33
    • 79955674916 scopus 로고    scopus 로고
    • Data analysis and short term load forecasting in Iran electricity market using singular spectral analysis (SSA)
    • [33] Afshar, K., Bigdeli, N., Data analysis and short term load forecasting in Iran electricity market using singular spectral analysis (SSA). Energy 36 (2011), 2620–2627.
    • (2011) Energy , vol.36 , pp. 2620-2627
    • Afshar, K.1    Bigdeli, N.2
  • 34
    • 84862924657 scopus 로고    scopus 로고
    • A new adaptive line enhancer based on singular spectrum analysis
    • [34] Sanei, S., Lee, T.K.M., Abolghasemi, V., A new adaptive line enhancer based on singular spectrum analysis. IEEE Trans. Biomed. Eng. 59:2 (2012), 428–434.
    • (2012) IEEE Trans. Biomed. Eng. , vol.59 , Issue.2 , pp. 428-434
    • Sanei, S.1    Lee, T.K.M.2    Abolghasemi, V.3
  • 35
    • 79957892241 scopus 로고    scopus 로고
    • Extracting fetal heart signal from noisy maternal ECG by multivariate Singular Spectrum Analysis
    • [35] Ghodsi, M., Hassani, H., Sanei, S., Extracting fetal heart signal from noisy maternal ECG by multivariate Singular Spectrum Analysis. Stat. Interface 3 (2010), 399–411.
    • (2010) Stat. Interface , vol.3 , pp. 399-411
    • Ghodsi, M.1    Hassani, H.2    Sanei, S.3
  • 36
    • 19044365964 scopus 로고
    • Singular spectrum analysis in nonlinear dynamics, with Applications to paleoclimatic time series
    • [36] Vautard, R., Ghil, M., Singular spectrum analysis in nonlinear dynamics, with Applications to paleoclimatic time series. Physica D: Nonlinear Phenom. 35 (1989), 395–424.
    • (1989) Physica D: Nonlinear Phenom. , vol.35 , pp. 395-424
    • Vautard, R.1    Ghil, M.2
  • 37
    • 58949091426 scopus 로고    scopus 로고
    • Forecasting European industrial production with singular spectrum analysis
    • [37] Hassani, H., Heravi, S., Zhigljavsky, A., Forecasting European industrial production with singular spectrum analysis. Int. J. Forecast. 25 (2009), 103–118.
    • (2009) Int. J. Forecast. , vol.25 , pp. 103-118
    • Hassani, H.1    Heravi, S.2    Zhigljavsky, A.3
  • 38
    • 0003874920 scopus 로고    scopus 로고
    • Analysis of Time Series Structure: SSA and Related Techniques
    • Chapman & Hall/CRC New York–London
    • [38] Golyandina, N., Nekrutkin, V., Zhigljavsky, A., Analysis of Time Series Structure: SSA and Related Techniques. 2001, Chapman & Hall/CRC, New York–London.
    • (2001)
    • Golyandina, N.1    Nekrutkin, V.2    Zhigljavsky, A.3
  • 39
    • 41749116136 scopus 로고    scopus 로고
    • Singular spectrum analysis: methodology and comparison
    • [39] Hassani, H., Singular spectrum analysis: methodology and comparison. J. Data Sci. 5 (2007), 239–257.
    • (2007) J. Data Sci. , vol.5 , pp. 239-257
    • Hassani, H.1
  • 40
    • 84858985277 scopus 로고    scopus 로고
    • Engineering optimization by cuckoo search
    • [40] Yang, X.S., Deb, S., Engineering optimization by cuckoo search. Int. J. Math. Model. Numer. Optimiz. 1:4 (2010), 330–343.
    • (2010) Int. J. Math. Model. Numer. Optimiz. , vol.1 , Issue.4 , pp. 330-343
    • Yang, X.S.1    Deb, S.2
  • 41
    • 84926193230 scopus 로고    scopus 로고
    • A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
    • [41] Xiao, L., Wang, J., Hou, R., Wu, J., A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 82 (2015), 524–549.
    • (2015) Energy , vol.82 , pp. 524-549
    • Xiao, L.1    Wang, J.2    Hou, R.3    Wu, J.4
  • 44
    • 0003991806 scopus 로고    scopus 로고
    • Statistical Learning Theory 2
    • Wiley New York
    • [44] Vapnik, V., Statistical Learning Theory 2. 1998, Wiley, New York.
    • (1998)
    • Vapnik, V.1
  • 45
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • [45] Huang, C., Davis, L., Townshend, J., An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 23:4 (2002), 725–749.
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.2    Townshend, J.3
  • 46
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks
    • IEEE
    • [46] Sung, A.H., Mukkamala, S., Identifying important features for intrusion detection using support vector machines and neural networks. in: 2003 Symposium on Applications and the Internet, 2003, IEEE.
    • (2003) in: 2003 Symposium on Applications and the Internet
    • Sung, A.H.1    Mukkamala, S.2
  • 47
    • 0003410292 scopus 로고
    • Time series analysis forecasting and control
    • 3rd ed. Prentice Hall New Jersy
    • [47] Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Time series analysis forecasting and control. 3rd ed., 1994, Prentice Hall, New Jersy.
    • (1994)
    • Box, G.E.P.1    Jenkins, G.M.2    Reinsel, G.C.3
  • 48
    • 84906483194 scopus 로고    scopus 로고
    • A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
    • [48] Yu, F., Xu, X., A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl. Energy 134 (2014), 102–113.
    • (2014) Appl. Energy , vol.134 , pp. 102-113
    • Yu, F.1    Xu, X.2
  • 49
    • 71349088571 scopus 로고    scopus 로고
    • The practical research on flood forecasting based on artificial neural networks
    • [49] Feng, L.H., Liu, J., The practical research on flood forecasting based on artificial neural networks. Expert Syst. Appl. 37 (2010), 2974–2977.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 2974-2977
    • Feng, L.H.1    Liu, J.2
  • 50
    • 84983770652 scopus 로고    scopus 로고
    • Improved ν-Support vector regression model based on variable selection and brain storm optimization for stock price forecasting
    • [50] Wang, J., Hou, R., Wang, C., Shen, L., Improved ν-Support vector regression model based on variable selection and brain storm optimization for stock price forecasting. Appl. Soft Comput. 49 (2016), 164–178.
    • (2016) Appl. Soft Comput. , vol.49 , pp. 164-178
    • Wang, J.1    Hou, R.2    Wang, C.3    Shen, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.