메뉴 건너뛰기




Volumn 39, Issue 9, 2015, Pages 2617-2632

A hybrid application algorithm based on the support vector machine and artificial intelligence: An example of electric load forecasting

Author keywords

Electric load forecasting; Empirical mode decomposition; LSSVM; PSO; Seasonal adjustment

Indexed keywords

COMMERCE; ELECTRIC POWER PLANT LOADS; FORECASTING; LEAST SQUARES APPROXIMATIONS; PARTICLE SWARM OPTIMIZATION (PSO); SIGNAL FILTERING AND PREDICTION; SUPPORT VECTOR MACHINES;

EID: 84928213604     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2014.10.065     Document Type: Article
Times cited : (70)

References (41)
  • 1
    • 0142228351 scopus 로고    scopus 로고
    • Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model
    • Al-Hamadi H.M., Soliman S.A. Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model. Electr. Power Syst. Res. 2004, 68(1):47-59.
    • (2004) Electr. Power Syst. Res. , vol.68 , Issue.1 , pp. 47-59
    • Al-Hamadi, H.M.1    Soliman, S.A.2
  • 2
    • 13844320123 scopus 로고    scopus 로고
    • Next day load curve forecasting using hybrid correction method
    • Senjyu T., Mandal P., Uezato K., et al. Next day load curve forecasting using hybrid correction method. IEEE Trans. Power Syst. 2005, 20(1):102-109.
    • (2005) IEEE Trans. Power Syst. , vol.20 , Issue.1 , pp. 102-109
    • Senjyu, T.1    Mandal, P.2    Uezato, K.3
  • 3
    • 77957831527 scopus 로고    scopus 로고
    • An improved WM method based on PSO for electric load forecasting
    • Yang X., Yuan J., Yuan J., et al. An improved WM method based on PSO for electric load forecasting. Expert Syst. Appl. 2010, 37(12):8036-8041.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.12 , pp. 8036-8041
    • Yang, X.1    Yuan, J.2    Yuan, J.3
  • 4
    • 84868370488 scopus 로고    scopus 로고
    • Modeling data uncertainty on electric load forecasting based on type-2 fuzzy logic set theory
    • Lou C.W., Dong M.C. Modeling data uncertainty on electric load forecasting based on type-2 fuzzy logic set theory. Eng. Appl. Artif. Intel. 2012, 25(8):1567-1576.
    • (2012) Eng. Appl. Artif. Intel. , vol.25 , Issue.8 , pp. 1567-1576
    • Lou, C.W.1    Dong, M.C.2
  • 5
    • 77949268921 scopus 로고    scopus 로고
    • Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach
    • Kucukali S., Baris K. Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy 2010, 38(5):2438-2445.
    • (2010) Energy Policy , vol.38 , Issue.5 , pp. 2438-2445
    • Kucukali, S.1    Baris, K.2
  • 6
    • 79952448415 scopus 로고    scopus 로고
    • Chaotic time series method combined with particle swarm optimization and trend adjustment for electricity demand forecasting
    • Wang J., Chi D., Wu J., et al. Chaotic time series method combined with particle swarm optimization and trend adjustment for electricity demand forecasting. Expert Syst. Appl. 2011, 38(7):8419-8429.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.7 , pp. 8419-8429
    • Wang, J.1    Chi, D.2    Wu, J.3
  • 7
    • 84858445884 scopus 로고    scopus 로고
    • Forecasting next-day electricity demand and price using nonparametric functional methods
    • Vilar J.M., Cao R., Aneiros G. Forecasting next-day electricity demand and price using nonparametric functional methods. Int. J. Electr. Power Energy Syst. 2012, 39(1):48-55.
    • (2012) Int. J. Electr. Power Energy Syst. , vol.39 , Issue.1 , pp. 48-55
    • Vilar, J.M.1    Cao, R.2    Aneiros, G.3
  • 8
    • 84859942718 scopus 로고    scopus 로고
    • Decomposition and statistical analysis for regional electricity demand forecasting
    • Wang C., Grozev G., Seo S. Decomposition and statistical analysis for regional electricity demand forecasting. Energy 2012, 41(1):313-325.
    • (2012) Energy , vol.41 , Issue.1 , pp. 313-325
    • Wang, C.1    Grozev, G.2    Seo, S.3
  • 9
    • 79959375525 scopus 로고    scopus 로고
    • Medium-term electric load forecasting using singular value decomposition
    • Abu-Shikhah N., Elkarmi F. Medium-term electric load forecasting using singular value decomposition. Energy 2011, 36(7):4259-4271.
    • (2011) Energy , vol.36 , Issue.7 , pp. 4259-4271
    • Abu-Shikhah, N.1    Elkarmi, F.2
  • 10
    • 0024764917 scopus 로고
    • Analysis and evaluation of five short-term load forecasting techniques
    • Moghram I.S., Rahman S. Analysis and evaluation of five short-term load forecasting techniques. IEEE Trans. Power Syst. 1989, 4(4):1484-1491.
    • (1989) IEEE Trans. Power Syst. , vol.4 , Issue.4 , pp. 1484-1491
    • Moghram, I.S.1    Rahman, S.2
  • 11
    • 0014629731 scopus 로고
    • The combination of forecasts
    • Bates J.M., Granger C.W.J. The combination of forecasts. OR 1969, 451-468.
    • (1969) OR , pp. 451-468
    • Bates, J.M.1    Granger, C.W.J.2
  • 12
    • 0016497303 scopus 로고
    • Some comments on the combination of forecasts
    • Dickinson J.P. Some comments on the combination of forecasts. Oper. Res. Q. 1975, 205-210.
    • (1975) Oper. Res. Q. , pp. 205-210
    • Dickinson, J.P.1
  • 13
    • 84870024579 scopus 로고    scopus 로고
    • A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm
    • Li H., Guo S., Li C., et al. A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowl. Based Syst. 2013, 37:378-387.
    • (2013) Knowl. Based Syst. , vol.37 , pp. 378-387
    • Li, H.1    Guo, S.2    Li, C.3
  • 14
    • 84865413861 scopus 로고    scopus 로고
    • Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting
    • Zhang W.Y., Hong W.C., Dong Y., et al. Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting. Energy 2012, 45(1):850-858.
    • (2012) Energy , vol.45 , Issue.1 , pp. 850-858
    • Zhang, W.Y.1    Hong, W.C.2    Dong, Y.3
  • 15
    • 53849110638 scopus 로고    scopus 로고
    • BP neural network with rough set for short term load forecasting
    • Xiao Z., Ye S.J., Zhong B., et al. BP neural network with rough set for short term load forecasting. Expert Syst. Appl. 2009, 36(1):273-279.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.1 , pp. 273-279
    • Xiao, Z.1    Ye, S.J.2    Zhong, B.3
  • 16
    • 84870662167 scopus 로고    scopus 로고
    • Improved estimation of electricity demand function by using of artificial neural network, principal component analysis and data envelopment analysis
    • Kheirkhah A., Azadeh A., Saberi M., et al. Improved estimation of electricity demand function by using of artificial neural network, principal component analysis and data envelopment analysis. Comput. Ind. Eng. 2013, 64(1):425-441.
    • (2013) Comput. Ind. Eng. , vol.64 , Issue.1 , pp. 425-441
    • Kheirkhah, A.1    Azadeh, A.2    Saberi, M.3
  • 17
    • 77957550483 scopus 로고    scopus 로고
    • Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach
    • Chang P.C., Fan C.Y., Lin J.J. Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach. Int. J. Electr. Power Energy Syst. 2011, 33(1):17-27.
    • (2011) Int. J. Electr. Power Energy Syst. , vol.33 , Issue.1 , pp. 17-27
    • Chang, P.C.1    Fan, C.Y.2    Lin, J.J.3
  • 18
    • 84903145112 scopus 로고    scopus 로고
    • Techniques of applying wavelet de-noising into a combined model for short-term load forecasting
    • Wang J., Wang J., Li Y., et al. Techniques of applying wavelet de-noising into a combined model for short-term load forecasting. Int. J. Electr. Power Energy Syst. 2014, 62:816-824.
    • (2014) Int. J. Electr. Power Energy Syst. , vol.62 , pp. 816-824
    • Wang, J.1    Wang, J.2    Li, Y.3
  • 19
    • 84898975702 scopus 로고    scopus 로고
    • A novel hybrid model for bi-objective short-term electric load forecasting
    • Che J.X. A novel hybrid model for bi-objective short-term electric load forecasting. Int. J. Electr. Power Energy Syst. 2014, 61:259-266.
    • (2014) Int. J. Electr. Power Energy Syst. , vol.61 , pp. 259-266
    • Che, J.X.1
  • 20
    • 55749112476 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
    • Hong W.C. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Convers. Manage. 2009, 50(1):105-117.
    • (2009) Energy Convers. Manage. , vol.50 , Issue.1 , pp. 105-117
    • Hong, W.C.1
  • 21
    • 83655163828 scopus 로고    scopus 로고
    • The model of chaotic sequences based on adaptive particle swarm optimization arithmetic combined with seasonal term
    • Wang J., Lu H., Dong Y., et al. The model of chaotic sequences based on adaptive particle swarm optimization arithmetic combined with seasonal term. Appl. Math. Model. 2012, 36(3):1184-1196.
    • (2012) Appl. Math. Model. , vol.36 , Issue.3 , pp. 1184-1196
    • Wang, J.1    Lu, H.2    Dong, Y.3
  • 22
    • 84881498920 scopus 로고    scopus 로고
    • Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme
    • Shayeghi H., Ghasemi A. Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme. Energy Convers. Manage. 2013, 74:482-491.
    • (2013) Energy Convers. Manage. , vol.74 , pp. 482-491
    • Shayeghi, H.1    Ghasemi, A.2
  • 23
    • 84870453135 scopus 로고    scopus 로고
    • An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO
    • Xu H., Chen G. An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO. Mech. Syst. Signal Process. 2013, 35(1):167-175.
    • (2013) Mech. Syst. Signal Process. , vol.35 , Issue.1 , pp. 167-175
    • Xu, H.1    Chen, G.2
  • 24
    • 84866313586 scopus 로고    scopus 로고
    • Day-ahead electricity price forecasting by a new hybrid method
    • Zhang J., Tan Z., Yang S. Day-ahead electricity price forecasting by a new hybrid method. Comput. Ind. Eng. 2012, 63(3):695-701.
    • (2012) Comput. Ind. Eng. , vol.63 , Issue.3 , pp. 695-701
    • Zhang, J.1    Tan, Z.2    Yang, S.3
  • 26
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Guo Z., Zhao W., Lu H., et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew. Energy 2012, 37(1):241-249.
    • (2012) Renew. Energy , vol.37 , Issue.1 , pp. 241-249
    • Guo, Z.1    Zhao, W.2    Lu, H.3
  • 27
    • 79955740028 scopus 로고    scopus 로고
    • Short-term electricity price forecast based on the improved hybrid model
    • Dong Y., Wang J., Jiang H., et al. Short-term electricity price forecast based on the improved hybrid model. Energy Convers. Manage. 2011, 52(8):2987-2995.
    • (2011) Energy Convers. Manage. , vol.52 , Issue.8 , pp. 2987-2995
    • Dong, Y.1    Wang, J.2    Jiang, H.3
  • 32
    • 0001829246 scopus 로고
    • Introduction to grey system theory
    • Deng J.L. Introduction to grey system theory. J. Grey Syst. 1989, 1(1):1-24.
    • (1989) J. Grey Syst. , vol.1 , Issue.1 , pp. 1-24
    • Deng, J.L.1
  • 33
    • 0013016870 scopus 로고    scopus 로고
    • A multi decision making based on modified grey relational grade
    • Wu J.H., Wen K.-L., You M.-L. A multi decision making based on modified grey relational grade. J. Grey Syst. 1999, 11(4):381-387.
    • (1999) J. Grey Syst. , vol.11 , Issue.4 , pp. 381-387
    • Wu, J.H.1    Wen, K.-L.2    You, M.-L.3
  • 34
    • 5444236478 scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    • Huang N.E., Shen Z., Long S.R., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1988, 454(1971):903-995.
    • (1988) Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , vol.454 , Issue.1971 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 35
    • 34548047685 scopus 로고    scopus 로고
    • Cosine window-based boundary processing method for EMD and its application in rubbing fault diagnosis
    • Qi K., He Z., Zi Y. Cosine window-based boundary processing method for EMD and its application in rubbing fault diagnosis. Mech. Syst. Signal Process. 2007, 21(7):2750-2760.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.7 , pp. 2750-2760
    • Qi, K.1    He, Z.2    Zi, Y.3
  • 38
    • 0036975981 scopus 로고    scopus 로고
    • A comparative study of using grey relational analysis in multiple attribute decision making problems
    • Wu H.H. A comparative study of using grey relational analysis in multiple attribute decision making problems. Qual. Eng. 2002, 15(2):209-217.
    • (2002) Qual. Eng. , vol.15 , Issue.2 , pp. 209-217
    • Wu, H.H.1
  • 40
    • 50849151631 scopus 로고
    • Control problems of grey systems
    • Ju-Long D. Control problems of grey systems. Syst. Control Lett. 1982, 1(5):288-294.
    • (1982) Syst. Control Lett. , vol.1 , Issue.5 , pp. 288-294
    • Ju-Long, D.1
  • 41
    • 84871717701 scopus 로고    scopus 로고
    • Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting
    • An N., Zhao W., Wang J., et al. Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting. Energy 2013, 49:279-288.
    • (2013) Energy , vol.49 , pp. 279-288
    • An, N.1    Zhao, W.2    Wang, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.