메뉴 건너뛰기




Volumn 49, Issue , 2016, Pages 164-178

Improved v -Support vector regression model based on variable selection and brain storm optimization for stock price forecasting

Author keywords

Brain storm optimization; Data pre analysis; Forecasting validity; Stock price index; v Support vector regression

Indexed keywords

BIG DATA; COMMERCE; COSTS; DATA HANDLING; DATA MINING; FINANCIAL MARKETS; FORECASTING; OPTIMIZATION; REGRESSION ANALYSIS; STORMS; TIME SERIES; TIME SERIES ANALYSIS; WEATHER FORECASTING;

EID: 84983770652     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2016.07.024     Document Type: Article
Times cited : (82)

References (40)
  • 1
    • 84894493014 scopus 로고    scopus 로고
    • Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization
    • [1] Singh, P., Borah, B., Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization. Int. J. Approx. Reason. 55 (2014), 812–833, 10.1016/j.ijar.2013.09.014.
    • (2014) Int. J. Approx. Reason. , vol.55 , pp. 812-833
    • Singh, P.1    Borah, B.2
  • 2
    • 84961289704 scopus 로고    scopus 로고
    • A hybrid fuzzy time series model based on granular computing for stock price forecasting
    • [2] Chen, M., Chen, B., A hybrid fuzzy time series model based on granular computing for stock price forecasting. Inf. Sci. (Ny) 294 (2015), 227–241, 10.1016/j.ins.2014.09.038.
    • (2015) Inf. Sci. (Ny) , vol.294 , pp. 227-241
    • Chen, M.1    Chen, B.2
  • 3
    • 84857647382 scopus 로고    scopus 로고
    • Stock price forecast using Bayesian network
    • [3] Zuo, Y., Kita, E., Stock price forecast using Bayesian network. Expert Syst. Appl. 39 (2012), 6729–6737, 10.1016/j.eswa.2011.12.035.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 6729-6737
    • Zuo, Y.1    Kita, E.2
  • 4
    • 79959987777 scopus 로고    scopus 로고
    • Forecasting stock indices with back propagation neural network
    • [4] Wang, J.-Z., Wang, J.-J., Zhang, Z.-G., Guo, S.-P., Forecasting stock indices with back propagation neural network. Expert Syst. Appl. 38 (2011), 14346–14355, 10.1016/j.eswa.2011.04.222.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 14346-14355
    • Wang, J.-Z.1    Wang, J.-J.2    Zhang, Z.-G.3    Guo, S.-P.4
  • 5
    • 84896542209 scopus 로고    scopus 로고
    • PSO-based high order time invariant fuzzy time series method: application to stock exchange data
    • [5] Egrioglu, E., PSO-based high order time invariant fuzzy time series method: application to stock exchange data. Econ. Model. 38 (2014), 633–639, 10.1016/j.econmod.2014.02.017.
    • (2014) Econ. Model. , vol.38 , pp. 633-639
    • Egrioglu, E.1
  • 6
    • 84864746036 scopus 로고    scopus 로고
    • Time-series forecasting with a novel fuzzy time-series approach: an example for Istanbul stock market
    • [6] Yolcu, U., Aladag, C.H., Egrioglu, E., Uslu, V.R., Time-series forecasting with a novel fuzzy time-series approach: an example for Istanbul stock market. J. Stat. Comput. Simul. 83 (2013), 599–612, 10.1080/00949655.2011.630000.
    • (2013) J. Stat. Comput. Simul. , vol.83 , pp. 599-612
    • Yolcu, U.1    Aladag, C.H.2    Egrioglu, E.3    Uslu, V.R.4
  • 7
    • 84881627430 scopus 로고    scopus 로고
    • Support vector regression with chaos-based firefly algorithm for stock market price forecasting
    • [7] Kazem, A., Sharifi, E., Hussain, F.K., Saberi, M., Hussain, O.K., Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl. Soft Comput. 13 (2013), 947–958, 10.1016/j.asoc.2012.09.024.
    • (2013) Appl. Soft Comput. , vol.13 , pp. 947-958
    • Kazem, A.1    Sharifi, E.2    Hussain, F.K.3    Saberi, M.4    Hussain, O.K.5
  • 8
    • 84866488723 scopus 로고    scopus 로고
    • Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction
    • [8] Asadi, S., Hadavandi, E., Mehmanpazir, F., Nakhostin, M.M., Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction. Knowledge-Based Syst. 35 (2012), 245–258, 10.1016/j.knosys.2012.05.003.
    • (2012) Knowledge-Based Syst. , vol.35 , pp. 245-258
    • Asadi, S.1    Hadavandi, E.2    Mehmanpazir, F.3    Nakhostin, M.M.4
  • 9
    • 84858745887 scopus 로고    scopus 로고
    • Stock index forecasting based on a hybrid model
    • [9] Wang, J.-J., Wang, J.-Z., Zhang, Z.-G., Guo, S.-P., Stock index forecasting based on a hybrid model. Omega 40 (2012), 758–766, 10.1016/j.omega.2011.07.008.
    • (2012) Omega , vol.40 , pp. 758-766
    • Wang, J.-J.1    Wang, J.-Z.2    Zhang, Z.-G.3    Guo, S.-P.4
  • 10
    • 84875418990 scopus 로고    scopus 로고
    • A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting
    • [10] Kao, L.-J., Chiu, C.-C., Lu, C.-J., Chang, C.-H., A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting. Decis. Support Syst. 54 (2013), 1228–1244, 10.1016/j.dss.2012.11.012.
    • (2013) Decis. Support Syst. , vol.54 , pp. 1228-1244
    • Kao, L.-J.1    Chiu, C.-C.2    Lu, C.-J.3    Chang, C.-H.4
  • 11
    • 84867889577 scopus 로고    scopus 로고
    • Integration of nonlinear independent component analysis and support vector regression for stock price forecasting
    • [11] Kao, L.-J., Chiu, C.-C., Lu, C.-J., Yang, J.-L., Integration of nonlinear independent component analysis and support vector regression for stock price forecasting. Neurocomputing 99 (2013), 534–542, 10.1016/j.neucom.2012.06.037.
    • (2013) Neurocomputing , vol.99 , pp. 534-542
    • Kao, L.-J.1    Chiu, C.-C.2    Lu, C.-J.3    Yang, J.-L.4
  • 12
    • 84877852473 scopus 로고    scopus 로고
    • A Bayesian regularized artificial neural network for stock market forecasting
    • [12] Ticknor, J.L., A Bayesian regularized artificial neural network for stock market forecasting. Expert Syst. Appl. 40 (2013), 5501–5506, 10.1016/j.eswa.2013.04.013.
    • (2013) Expert Syst. Appl. , vol.40 , pp. 5501-5506
    • Ticknor, J.L.1
  • 13
    • 77956340248 scopus 로고    scopus 로고
    • Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting
    • [13] Hadavandi, E., Shavandi, H., Ghanbari, A., Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowledge-Based Syst. 23 (2010), 800–808, 10.1016/j.knosys.2010.05.004.
    • (2010) Knowledge-Based Syst. , vol.23 , pp. 800-808
    • Hadavandi, E.1    Shavandi, H.2    Ghanbari, A.3
  • 14
    • 79551685695 scopus 로고    scopus 로고
    • Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm
    • [14] Shen, W., Guo, X., Wu, C., Wu, D., Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowledge-Based Syst. 24 (2011), 378–385, 10.1016/j.knosys.2010.11.001.
    • (2011) Knowledge-Based Syst. , vol.24 , pp. 378-385
    • Shen, W.1    Guo, X.2    Wu, C.3    Wu, D.4
  • 15
    • 78049527969 scopus 로고    scopus 로고
    • A multiple-kernel support vector regression approach for stock market price forecasting
    • [15] Yeh, C.-Y., Huang, C.-W., Lee, S.-J., A multiple-kernel support vector regression approach for stock market price forecasting. Expert Syst. Appl. 38 (2011), 2177–2186, 10.1016/j.eswa.2010.08.004.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 2177-2186
    • Yeh, C.-Y.1    Huang, C.-W.2    Lee, S.-J.3
  • 16
    • 84888287824 scopus 로고    scopus 로고
    • Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
    • [16] Xiong, T., Bao, Y., Hu, Z., Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting. Knowledge-Based Syst. 55 (2014), 87–100, 10.1016/j.knosys.2013.10.012.
    • (2014) Knowledge-Based Syst. , vol.55 , pp. 87-100
    • Xiong, T.1    Bao, Y.2    Hu, Z.3
  • 17
    • 73949161331 scopus 로고    scopus 로고
    • The support vector regression with the parameter tuning assisted by a differential evolution technique: study of the critical velocity of a slurry flow in a pipeline
    • [17] Lahiri, S.K., Ghanta, K.C., The support vector regression with the parameter tuning assisted by a differential evolution technique: study of the critical velocity of a slurry flow in a pipeline. Chem. Ind. Chem. Eng. Q. 14 (2008), 191–203, 10.2298/CICEQ0803191L.
    • (2008) Chem. Ind. Chem. Eng. Q. , vol.14 , pp. 191-203
    • Lahiri, S.K.1    Ghanta, K.C.2
  • 18
    • 58349084263 scopus 로고    scopus 로고
    • A novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
    • [18] Wu, C.-H., Tzeng, G.-H., Lin, R.-H., A novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst. Appl. 36 (2009), 4725–4735, 10.1016/j.eswa.2008.06.046.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 4725-4735
    • Wu, C.-H.1    Tzeng, G.-H.2    Lin, R.-H.3
  • 19
    • 70350738800 scopus 로고    scopus 로고
    • An integrated PSO for parameter determination and feature selection of SVR and its application in stlf
    • [19] Guo, Y.C., An integrated PSO for parameter determination and feature selection of SVR and its application in stlf. Proc. 2009 Int. Conf. Mach. Learn. Cybern., 2009, 359–364, 10.1109/ICMLC.2009.5212569.
    • (2009) Proc. 2009 Int. Conf. Mach. Learn. Cybern. , pp. 359-364
    • Guo, Y.C.1
  • 20
    • 84900812502 scopus 로고    scopus 로고
    • Principal component analysis for feature extraction and NN pattern recognition in sensor monitoring of chip form during turning
    • [20] Segreto, T., Simeone, a., Teti, R., Principal component analysis for feature extraction and NN pattern recognition in sensor monitoring of chip form during turning. CIRP J. Manuf. Sci. Technol. 7 (2014), 202–209, 10.1016/j.cirpj.2014.04.005.
    • (2014) CIRP J. Manuf. Sci. Technol. , vol.7 , pp. 202-209
    • Segreto, T.1    Simeone, A.2    Teti, R.3
  • 21
    • 84898966331 scopus 로고    scopus 로고
    • Wind forecasting using principal component analysis
    • [21] Skittides, C., Früh, W.-G., Wind forecasting using principal component analysis. Renew. Energy 69 (2014), 365–374, 10.1016/j.renene.2014.03.068.
    • (2014) Renew. Energy , vol.69 , pp. 365-374
    • Skittides, C.1    Früh, W.-G.2
  • 22
    • 84901829317 scopus 로고    scopus 로고
    • Improvement of mechanical properties of recycled plastic blends via optimizing processing parameters using the Taguchi method and principal component analysis
    • [22] Gu, F., Hall, P., Miles, N.J., Ding, Q., Wu, T., Improvement of mechanical properties of recycled plastic blends via optimizing processing parameters using the Taguchi method and principal component analysis. Mater. Des. 62 (2014), 189–198, 10.1016/j.matdes.2014.05.013.
    • (2014) Mater. Des. , vol.62 , pp. 189-198
    • Gu, F.1    Hall, P.2    Miles, N.J.3    Ding, Q.4    Wu, T.5
  • 23
    • 84902170857 scopus 로고    scopus 로고
    • Key joint kinematic characteristics of the gait of fallers identified by principal component analysis
    • [23] Kobayashi, Y., Hobara, H., Matsushita, S., Mochimaru, M., Key joint kinematic characteristics of the gait of fallers identified by principal component analysis. J. Biomech. 47 (2014), 2424–2429, 10.1016/j.jbiomech.2014.04.011.
    • (2014) J. Biomech. , vol.47 , pp. 2424-2429
    • Kobayashi, Y.1    Hobara, H.2    Matsushita, S.3    Mochimaru, M.4
  • 24
    • 84871566926 scopus 로고    scopus 로고
    • An optimization algorithm based on brainstorming process
    • [24] Shi, Y., An optimization algorithm based on brainstorming process. Int. J. Swarm Intell. Res. 2 (2011), 35–62, 10.4018/jsir.2011100103.
    • (2011) Int. J. Swarm Intell. Res. , vol.2 , pp. 35-62
    • Shi, Y.1
  • 26
    • 79958194494 scopus 로고    scopus 로고
    • Brain storm optimization algorithm
    • [26] Shi, Y., Brain storm optimization algorithm. Adv. Swarm Intell., 2011, 303–309, 10.1007/978-3-642-21515-5_36.
    • (2011) Adv. Swarm Intell. , pp. 303-309
    • Shi, Y.1
  • 27
    • 84886787470 scopus 로고    scopus 로고
    • Solution clustering analysis in brain storm optimization algorithm
    • [27] Cheng, S., Shi, Y., Qin, Q., Solution clustering analysis in brain storm optimization algorithm. 2013 IEEE Symp. Swarm Intell., 2013, 111–118, 10.1109/SIS.2013.6615167.
    • (2013) 2013 IEEE Symp. Swarm Intell. , pp. 111-118
    • Cheng, S.1    Shi, Y.2    Qin, Q.3
  • 28
    • 84884683450 scopus 로고    scopus 로고
    • Predator–prey brain storm optimization for DC Brushless motor
    • [28] Duan, H., Li, S., Shi, Y., Predator–prey brain storm optimization for DC Brushless motor. IEEE Trans. Magn. 49 (2013), 5336–5340.
    • (2013) IEEE Trans. Magn. , vol.49 , pp. 5336-5340
    • Duan, H.1    Li, S.2    Shi, Y.3
  • 29
    • 84886669118 scopus 로고    scopus 로고
    • Optimal satellite formation reconfiguration based on closed-loop brain storm optimization
    • [29] Sun, C., Duan, H., Shi, Y., Optimal satellite formation reconfiguration based on closed-loop brain storm optimization. IEEE Comput. Intell. Mag. 8 (2013), 39–51, 10.1109/MCI.2013.2279560.
    • (2013) IEEE Comput. Intell. Mag. , vol.8 , pp. 39-51
    • Sun, C.1    Duan, H.2    Shi, Y.3
  • 30
    • 84858214953 scopus 로고    scopus 로고
    • Assessing energy sustainability of rural communities using Principal Component Analysis
    • [30] Doukas, H., Papadopoulou, A., Savvakis, N., Tsoutsos, T., Psarras, J., Assessing energy sustainability of rural communities using Principal Component Analysis. Renew. Sustain. Energy Rev. 16 (2012), 1949–1957, 10.1016/j.rser.2012.01.018.
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 1949-1957
    • Doukas, H.1    Papadopoulou, A.2    Savvakis, N.3    Tsoutsos, T.4    Psarras, J.5
  • 31
    • 33749247555 scopus 로고    scopus 로고
    • Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
    • [31] Sousa, S., Martins, F., Alvimferraz, M., Pereira, M., Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ. Model. Softw. 22 (2007), 97–103, 10.1016/j.envsoft.2005.12.002.
    • (2007) Environ. Model. Softw. , vol.22 , pp. 97-103
    • Sousa, S.1    Martins, F.2    Alvimferraz, M.3    Pereira, M.4
  • 33
    • 84864350958 scopus 로고    scopus 로고
    • An enhanced MEMS error modeling approach based on Nu-Support vector regression
    • [33] Bhatt, D., Aggarwal, P., Bhattacharya, P., Devabhaktuni, V., An enhanced MEMS error modeling approach based on Nu-Support vector regression. Sensors (Switzerland) 12 (2012), 9448–9466, 10.3390/s120709448.
    • (2012) Sensors (Switzerland) , vol.12 , pp. 9448-9466
    • Bhatt, D.1    Aggarwal, P.2    Bhattacharya, P.3    Devabhaktuni, V.4
  • 34
    • 0038895405 scopus 로고    scopus 로고
    • Training v-Support vector regression: theory and algorithms
    • [34] Chang, C.-C., Lin, C.-J., Training v-Support vector regression: theory and algorithms. Neural Comput. 14 (2002), 1959–1977, 10.1162/089976602760128081.
    • (2002) Neural Comput. , vol.14 , pp. 1959-1977
    • Chang, C.-C.1    Lin, C.-J.2
  • 35
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • [35] Keerthi, S.S., Lin, C.-J., Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput. 15 (2003), 1667–1689, 10.1162/089976603321891855.
    • (2003) Neural Comput. , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 36
    • 46249083228 scopus 로고    scopus 로고
    • Research on soft sensor modeling of fermentation process based on v-SVR
    • [36] Ma, Y., Research on soft sensor modeling of fermentation process based on v-SVR. Proc. IEEE ICIA 2006–2006 IEEE Int. Conf. Inf. Acquis., 2006, 759–763, 10.1109/ICIA.2006.305825.
    • (2006) Proc. IEEE ICIA 2006–2006 IEEE Int. Conf. Inf. Acquis. , pp. 759-763
    • Ma, Y.1
  • 37
    • 84904181940 scopus 로고    scopus 로고
    • The impact of the CSI 300 stock index futures: positive feedback trading and autocorrelation of stock returns
    • [37] Hou, Y., Li, S., The impact of the CSI 300 stock index futures: positive feedback trading and autocorrelation of stock returns. Int. Rev. Econ. Financ. 33 (2014), 319–337, 10.1016/j.iref.2014.03.001.
    • (2014) Int. Rev. Econ. Financ. , vol.33 , pp. 319-337
    • Hou, Y.1    Li, S.2
  • 38
    • 84872137232 scopus 로고    scopus 로고
    • Price-volume cross-correlation analysis of CSI300 index futures
    • [38] Wang, D.H., Suo, Y.Y., Yu, X.W., Lei, M., Price-volume cross-correlation analysis of CSI300 index futures. Phys. A Stat. Mech. Its Appl. 392 (2013), 1172–1179, 10.1016/j.physa.2012.11.031.
    • (2013) Phys. A Stat. Mech. Its Appl. , vol.392 , pp. 1172-1179
    • Wang, D.H.1    Suo, Y.Y.2    Yu, X.W.3    Lei, M.4
  • 39
    • 84983770437 scopus 로고    scopus 로고
    • The exploration of the normal form of the index of forecasting validity[J]
    • [39] Wang, Mingtao, The exploration of the normal form of the index of forecasting validity[J]. Forecasting 17:2 (1998), 39–40.
    • (1998) Forecasting , vol.17 , Issue.2 , pp. 39-40
    • Wang, M.1
  • 40
    • 84983793436 scopus 로고    scopus 로고
    • The analysis of the index of forecasting validity[J]
    • [40] Wang, Mingtao, The analysis of the index of forecasting validity[J]. Forecasting 16:3 (1997), 50–52.
    • (1997) Forecasting , vol.16 , Issue.3 , pp. 50-52
    • Wang, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.